留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于成熟阶段密度制约的同类相食模型的动力学分析

贾西北 蔺小林 李建全 曹美琪

贾西北,蔺小林,李建全,曹美琪. 基于成熟阶段密度制约的同类相食模型的动力学分析 [J]. 应用数学和力学,2023,44(3):355-366 doi: 10.21656/1000-0887.430120
引用本文: 贾西北,蔺小林,李建全,曹美琪. 基于成熟阶段密度制约的同类相食模型的动力学分析 [J]. 应用数学和力学,2023,44(3):355-366 doi: 10.21656/1000-0887.430120
JIA Xibei, LIN Xiaolin, LI Jianquan, CAO Meiqi. Dynamics Analysis of Cannibalistic Model With Density Dependence in Mature Stage[J]. Applied Mathematics and Mechanics, 2023, 44(3): 355-366. doi: 10.21656/1000-0887.430120
Citation: JIA Xibei, LIN Xiaolin, LI Jianquan, CAO Meiqi. Dynamics Analysis of Cannibalistic Model With Density Dependence in Mature Stage[J]. Applied Mathematics and Mechanics, 2023, 44(3): 355-366. doi: 10.21656/1000-0887.430120

基于成熟阶段密度制约的同类相食模型的动力学分析

doi: 10.21656/1000-0887.430120
基金项目: 国家自然科学基金(11971281)
详细信息
    作者简介:

    贾西北(1997—),女,硕士生(E-mail:1457043054@qq.com

    蔺小林(1961—),男,教授,硕士生导师 (通讯作者. E-mail:linxl@sust.edu.cn

  • 中图分类号: O175.13

Dynamics Analysis of Cannibalistic Model With Density Dependence in Mature Stage

  • 摘要:

    在考虑成熟阶段具有密度制约的基础上,建立了一类具有卵-成熟阶段的同类相食模型。该文从两个方面讨论了模型的动力学性态:当种群不存在同类相食时,构造Lyapunov函数证明平衡点的全局渐近稳定性;当种群存在同类相食时,利用中心流形定理证明同类相食使模型产生鞍结点分支,通过构造Dulac函数说明在二维自治系统中不存在极限环,得到了平衡点的全局稳定性。最后,利用数值模拟验证了所得相应结果的正确性。

  • 图  1  模型(1)存在种群灭绝平衡点时的动力学性态

    Figure  1.  The model (1) dynamics with a population extinction equilibrium point

    图  2  模型(1)在$ d \lt r $时存在唯一种群存活平衡点的动力学性态

    Figure  2.  The model (1) dynamics with a unique population survival equilibrium point for $ d \lt r $

    图  3  模型(1)存在两个种群存活平衡点的动力学性态

    Figure  3.  The model (1) dynamics with 2 population survival equilibrium points

    图  4  模型(1)存在鞍结点的动力学性态

    Figure  4.  The model (1) dynamics with saddle nodes

  • [1] 祖力, 黄冬冬, 柳扬. 捕食者和食饵均带有扩散的随机捕食-食饵模型动力学分析[J]. 应用数学和力学, 2017, 38(3): 355-368

    ZU Li, HUANG Dongdong, LIU Yang. Dynamics of dual-dispersal predator-prey systems under stochastic perturbations[J]. Applied Mathematics and Mechanics, 2017, 38(3): 355-368.(in Chinese)
    [2] 王小娥, 蔺小林, 李建全. 具有Holling IV型功能反应捕食系统的状态反馈控制[J]. 应用数学和力学, 2020, 41(12): 1369-1380

    WANG Xiaoe, LIN Xiaolin, LI Jianquan. State feedback control of predator-prey systems with Holling IV functional responses[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1369-1380.(in Chinese)
    [3] 陈乾君, 蒋媛, 刘子建, 等. 具有Gilpin-Ayala增长的随机捕食-食饵模型的动力学行为[J]. 应用数学和力学, 2022, 43(4): 453-468

    CHEN Qianjun, JIANG Yuan, LIU Zijian, et al. Dynamic behavior of a stochastic predator prey model with the Gilpin-Ayala growth[J]. Applied Mathematics and Mechanics, 2022, 43(4): 453-468.(in Chinese)
    [4] 黄大明, 张天曦, 李淑芬, 等. 自然种群中的同类相食[J]. 中国科技纵横, 2019(7): 252-256 doi: 10.3969/j.issn.1671-2064.2019.07.116

    HUANG Daming, ZHANG Tianxi, LI Shufen, et al. Cannibalism in natural populations[J]. China Science & Technology Overview, 2019(7): 252-256.(in Chinese) doi: 10.3969/j.issn.1671-2064.2019.07.116
    [5] CUSHING J M, HENSON S M, HAYWARD J L. An evolutionary game-theoretic model of cannibalism[J]. Natural Resource Modeling, 2015, 28(4): 497-521. doi: 10.1111/nrm.12079
    [6] CUSHING J M. A simple model of cannibalism[J]. Mathematical Biosciences, 1991, 107(1): 47-71. doi: 10.1016/0025-5564(91)90071-P
    [7] RICHARDSON M L, MITCHELL R F, REAGEL P F, et al. Causes and consequences of cannibalism in noncarnivorous insects[J]. Annual Review of Entomology, 2015, 55(1): 39-53.
    [8] GABRIEL W. Overcoming food limitation by cannibalism: a model study on cyclopoids[C]//Ergebnisse der Limnologie Advances in Iimnology. Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), 1985: 373-381.
    [9] VAN DEN BOSCH F, DE ROOS A M, GABRIEL W. Cannibalism as a life boat mechanism[J]. Journal of Mathematical Biology, 1988, 26(6): 619-633. doi: 10.1007/BF00276144
    [10] VAN DEN BOSCH F, GABRIEL W. Cannibalism in an age-structured predator-prey system[J]. Bulletin of Mathematical Biology, 1997, 59(3): 551-567. doi: 10.1007/BF02459465
    [11] WIKAN A, EIDE A. An analysis of a nonlinear stage-structured cannibalism model with application to the northeast arctic cod stock[J]. Bulletin of Mathematical Biology, 2004, 66(6): 1685-1704. doi: 10.1016/j.bulm.2004.03.005
    [12] CHAKRABORTY K, DAS K, KAR T K. Combined harvesting of a stage structured prey-predator model incorporating cannibalism in competitive environment[J]. Comptes Rendus Biologies, 2013, 336(1): 34-45. doi: 10.1016/j.crvi.2013.01.002
    [13] BISWAS S, CHATTERJEE S, CHDATTOPADHYAY J. Cannibalism may control disease in predator population: result drawn from a model based study[J]. Mathematical Methods in the Applied Sciences, 2015, 38(11): 2272-2290. doi: 10.1002/mma.3220
    [14] ZHANG F Q, CHEN Y M, LI J Q. Dynamical analysis of a stage-structured predator-prey model with cannibalism[J]. Mathematical Biosciences, 2019, 307: 33-41. doi: 10.1016/j.mbs.2018.11.004
    [15] CHEN M J, FU S M, YANG X L. Global behavior of solutions in a predator-prey cross-diffusion model with cannibalism[J]. Complexity, 2020, 2020: 1265798.
    [16] 朱雪, 蔺小林, 李建全. 一类具有两阶段结构同类相食模型的动力学分析[J]. 工程数学学报, 2021, 38(2): 214-228 doi: 10.3969/j.issn.1005-3085.2021.02.006

    ZHU Xue, LIN Xiaolin, LI Jianquan. A dynamics analysis of cannibalism model with two-stage structure[J]. Chinese Journal of Engineering Mathematics, 2021, 38(2): 214-228.(in Chinese) doi: 10.3969/j.issn.1005-3085.2021.02.006
    [17] 马杏园, 邱志鹏. 一类具有同类相食的昆虫传染病模型分析[J]. 山西大学学报(自然科学版), 2022, 45(2): 348-355

    MA Xingyuan, QIU Zhipeng. Analysis of an insect epidemic model with cannibalism[J]. Journal of Shanxi University (Natural Science Edition), 2022, 45(2): 348-355.(in Chinese)
    [18] KANG Y, RODRIGUEZ-RODRIGUEZ M, EVILSIZOR S. Ecological and evolutionary dynamics of two-stage models of social insects with egg cannibalism[J]. Journal of Mathematical Analysis and Applications, 2015, 430(1): 324-353. doi: 10.1016/j.jmaa.2015.04.079
    [19] NAKAMURA K, HASAN N, ABBAS I, et al. Generation cycles in Indonesian lady beetle populations may occur as a result of cannibalism[J]. Proceedings of the Royal Society B: Biological Sciences, 2004, 271: S501-S504. doi: 10.1098/rspb.2003.2608
    [20] 陈兰荪, 王东达, 杨启昌. 阶段结构种群动力学模型[J]. 北华大学学报(自然科学版), 2000, 1(3): 185-191

    CHEN Lansun, WANG Dongda, YANG Qichang. The models of stage-structured population dynamics[J]. Journal of Beihua University (Natural Science), 2000, 1(3): 185-191.(in Chinese)
    [21] 赵甜, 张凤琴, 李建全. 同类相食对两阶段结构种群模型的动力学影响[J]. 数学的实践与认识, 2017, 47(20): 147-154

    ZHAO Tian, ZHANG Fengqin, LI Jianquan. Effect of cannibalism on dynamics of a population model with two-stage structure[J]. Mathematics in Practice and Theory, 2017, 47(20): 147-154.(in Chinese)
    [22] 李静, 孙桂全, 靳祯. 种内竞争时滞对植被周期振荡模式的影响研究[J]. 应用数学和力学, 2022, 43(6): 669-681

    LI Jing, SUN Guiquan, JIN Zhen. Effect of intraspecific competition delay on vegetation periodic oscillation pattern[J]. Applied Mathematics and Mechanics, 2022, 43(6): 669-681.(in Chinese)
  • 加载中
图(4)
计量
  • 文章访问数:  488
  • HTML全文浏览量:  192
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-05
  • 录用日期:  2022-08-01
  • 修回日期:  2022-06-06
  • 网络出版日期:  2023-02-21
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回