留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有时变时滞的离散时间切换奇异正系统的l1滤波

王金玲 侯玉晓 李强 谢宝英

王金玲, 侯玉晓, 李强, 谢宝英. 具有时变时滞的离散时间切换奇异正系统的l1滤波[J]. 应用数学和力学, 2023, 44(7): 857-869. doi: 10.21656/1000-0887.430125
引用本文: 王金玲, 侯玉晓, 李强, 谢宝英. 具有时变时滞的离散时间切换奇异正系统的l1滤波[J]. 应用数学和力学, 2023, 44(7): 857-869. doi: 10.21656/1000-0887.430125
WANG Jinling, HOU Yuxiao, LI Qiang, XIE Baoying. The l1 Filter for Discrete-Time Switched Singular Positive Systems With Time-Varying Delays[J]. Applied Mathematics and Mechanics, 2023, 44(7): 857-869. doi: 10.21656/1000-0887.430125
Citation: WANG Jinling, HOU Yuxiao, LI Qiang, XIE Baoying. The l1 Filter for Discrete-Time Switched Singular Positive Systems With Time-Varying Delays[J]. Applied Mathematics and Mechanics, 2023, 44(7): 857-869. doi: 10.21656/1000-0887.430125

具有时变时滞的离散时间切换奇异正系统的l1滤波

doi: 10.21656/1000-0887.430125
基金项目: 

国家自然科学基金项目 62003002

安徽省自然科学基金项目 2008085QF327

详细信息
    作者简介:

    侯玉晓(1996—), 女, 硕士生(E-mail: 15201690605@163.com)

    李强(1991—), 男, 副教授, 博士(E-mail: seuliqiang@ahau.edu.cn)

    谢宝英(1981—), 女, 讲师, 硕士(E-mail: xieby1014@163.com)

    通讯作者:

    王金玲(1989—), 女, 副教授, 博士(通讯作者. E-mail: jinlingwang@ahau.edu.cn)

  • 中图分类号: O175

The l1 Filter for Discrete-Time Switched Singular Positive Systems With Time-Varying Delays

  • 摘要: 该文主要研究了一类具有时变时滞的离散时间切换奇异系统在正性约束下的l1滤波器的设计问题.通过构造合适的共正Lyapunov函数并且利用平均驻留时间的方法, 以线性规划的形式给出使得相应的滤波误差系统是正的、正则的、因果的、指数稳定的充分条件.另外, 外部扰动输入对系统性能的影响也被加以分析和讨论, 并在稳定性的基础上进一步给出滤波误差系统具有给定l1增益性能的充分条件和相应滤波器的设计方法.最后, 通过数值算例来验证所给方法的有效性和可行性.
  • 图  1  例1中的切换序列

      为了解释图中的颜色,读者可以参考本文的电子网页版本.

    Figure  1.  The switching sequence in example 1

    图  2  w(k)≡0时, 系统(4)中状态x(k)的轨迹

      为了解释图中的颜色,读者可以参考本文的电子网页版本.

    Figure  2.  Trajectory x(k) of system (4) with w(k)≡0

    图  3  w(k)≡0时, 系统(4)中状态xe(k)的轨迹

      为了解释图中的颜色,读者可以参考本文的电子网页版本.

    Figure  3.  Trajectory xe(k) of system (4) with w(k)≡0

    图  4  w(k)=5-0.2k时, 系统(4)中ze(k)的轨迹

      为了解释图中的颜色,读者可以参考本文的电子网页版本.

    Figure  4.  Trajectory ze(k) of system (4) with w(k)=5-0.2k

  • [1] DAI L. Singular Control Systems[M]. Berlin: Spring-Verlag, 1989.
    [2] 支慧敏. 基于多不连续Lyapunov函数方法的切换奇异系统的稳定性分析[D]. 硕士学位论文. 郑州: 郑州大学, 2019.

    ZHI Huimin. Stability analysis of switched singular systems via a multiple discontinuous Lyapunov function approach[D]. Master Thesis. Zhengzhou: Zhengzhou University, 2019. (in Chinese)
    [3] ANH P K, LINH P T, THUAN D D, et al. Stability analysis for switched discrete-time linear singular systems[J]. Automatica, 2020, 119: 109100. doi: 10.1016/j.automatica.2020.109100
    [4] CARABALLO T, EZZINE F, HAMMAMI M A. On the exponential stability of stochastic perturbed singular systems in mean square[J]. Applied Mathematics & Optimization, 2021, 84: 2923-2945.
    [5] HAN Y, KAO Y, GAO C. Robust observer-based H control for uncertain discrete singular systems with time-varying delays via sliding mode approach[J]. ISA Transactions, 2018, 80: 81-88. doi: 10.1016/j.isatra.2018.05.023
    [6] SHI P, WANG H, LIM C C. Network-based event-triggered control for singular systems with quantizations[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1230-1238. doi: 10.1109/TIE.2015.2475515
    [7] QI W, ZONG G, KARIMI H R. Sliding mode control for nonlinear stochastic singular semi-Markov jump systems[J]. IEEE Transactions on Automatic Control, 2020, 65(1): 361-368. doi: 10.1109/TAC.2019.2915141
    [8] 杨冬梅, 李祉含. 广义非线性脉冲切换系统的指数稳定和L2增益控制[J]. 东北大学学报, 2021, 42(6): 908-912. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202106022.htm

    YANG Dongmei, LI Zhihan. Exponential stability and L2 gain control of generalized nonlinear impulsive switched systems[J]. Journal of Northeastern University, 2021, 42(6): 908-912. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202106022.htm
    [9] 王一晶, 王龙. 切换系统的自适应广义预测控制[J]. 应用数学和力学, 2005, 26 (5): 595-601. http://www.applmathmech.cn/article/id/520

    WANG Yijing, WANG Long. Adaptive generalized predictive control for switched systems[J]. Applied Mathematics and Mechanics, 2005, 26(5): 595-601. (in Chinese) http://www.applmathmech.cn/article/id/520
    [10] LIBERZON D. Switching in Systems and Control[M]. Birkhäuser Boston, 2003.
    [11] SUN Z, GE S S. Switched Linear Systems: Control and Design[M]. London: Springer-Verlag, 2005.
    [12] 菲利普维奇V. 切换系统的全局指数稳定性[J]. 应用数学和力学, 2011, 32(9): 1118-1126. doi: 10.3879/j.issn.1000-0887.2011.09.011

    FILIPOVIC V. Global exponential stability of switched systems[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1118-1126. (in Chinese) doi: 10.3879/j.issn.1000-0887.2011.09.011
    [13] WANG J, LIANG J. Robust finite-horizon stability and stabilization for positive switched FM-Ⅱ model with actuator saturation[J]. Nonlinear Analysis: Hybrid Systems, 2020, 35: 100829. doi: 10.1016/j.nahs.2019.100829
    [14] 曹娟, 任凤丽. Markov切换时滞基因调控网络的均方同步和随机无源同步[J]. 应用数学和力学, 2022, 43(2): 198-206. doi: 10.21656/1000-0887.420256

    CAO Juan, REN Fengli. Mean square synchronization and random passive synchronization of Markov switched delay gene regulatory networks[J]. Applied Mathematics and Mechanics, 2022, 43(2): 198-206. (in Chinese) doi: 10.21656/1000-0887.420256
    [15] WANG J, HOU Y, JIANG L, et al. Robust stability and stabilization of 2D positive system employing saturation[J]. Circuits, Systems, and Signal Processing, 2021, 40(3): 1183-1206. doi: 10.1007/s00034-020-01528-1
    [16] WANG D, SHI P, WANG J, et al. Delay-dependent exponential H filtering for discrete-time switched delay systems[J]. International Journal of Robust and Nonlinear Control, 2012, 22(13): 1522-1536. doi: 10.1002/rnc.1764
    [17] PENG X, WU H. Non-fragile robust finite-time stabilization and H performance analysis for fractional-order delayed neural networks with discontinuous activations under the asynchronous switching[J]. Neural Computing and Applications, 2020, 32(8): 4045-4071. doi: 10.1007/s00521-018-3682-z
    [18] 刘婷婷, 杨轩, 黄丽琼. 切换非线性正系统的有限时间稳定性[J]. 控制与决策, 37(7): 1915-1920. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202207030.htm

    LIU Tingting, YANG Xuan, HUANG Liqiong. Finite time stability of switched nonlinear positive systems[J]. Control and Decision, 37(7): 1915-1920. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202207030.htm
    [19] QI W, ZONG G, CHENG J, et al. Robust finite-time stabilization for positive delayed semi-Markovian switching systems[J]. Applied Mathematics and Computation, 2019, 351(12): 139-152.
    [20] KNORN F, MASON O, SHORTEN R. On linear co-positive Lyapunov functions for sets of linear positive systems[J]. Automatica, 2009, 45(8): 1943-1947. doi: 10.1016/j.automatica.2009.04.013
    [21] LIANG J, WANG J, HUANG T. l1 filtering for continuous-discrete T-S fuzzy positive Roesser model[J]. Journal of the Franklin Institute, 2018, 355(15): 7281-7305. doi: 10.1016/j.jfranklin.2018.07.017
    [22] 潘圣韬, 孙继涛. 不确定离散脉冲系统的鲁棒H滤波问题[J]. 应用数学和力学, 2009, 30(2): 221-228. http://www.applmathmech.cn/article/id/1197

    PAN Shengtao, SUN Jitao. Robust H filtering of uncertain discrete impulsive systems[J]. Applied Mathematics and Mechanics, 2009, 30(2): 221-228. (in Chinese) http://www.applmathmech.cn/article/id/1197
    [23] 孙凤琪. 不确定时滞摄动滤波误差动态系统的稳定性分析[J]. 应用数学和力学, 2020, 41(8): 899-911. doi: 10.21656/1000-0887.400368

    SUN Fengqi. Stability analysis of uncertain time-delay perturbed filtering error dynamic system[J]. Applied Mathematics and Mechanics, 2020, 41(8): 899-911. (in Chinese) doi: 10.21656/1000-0887.400368
    [24] WANG F, WANG Z, LIANG J, et al. Resilient filtering for linear time-varying repetitive processes under uniform quantizations and round-Robin protocols[J]. IEEE Transactions on Circuits and Systems : Regular Papers, 2018, 65(9): 2992-3004.
    [25] SHEN H, HUANG Z, CAO J, et al. Exponential H filtering for continuous-time switched neural networks under persistent dwell-time switching regularity[J]. IEEE Transactions on Cybernetics, 2020, 50(6): 2440-2449.
    [26] CHARQI M, CHAIBI N, TISSIR E H. H filtering of discrete-time switched singular systems with time-varying delays[J]. International Journal of Adaptive Control and Signal Processing, 2020, 34(4): 444-468.
    [27] WANG J, LIANG J, ZHANG C T. Dissipativity analysis and synthesis for positive Roesser systems under the switched mechanism and Takagi-Sugeno fuzzy rules[J]. Information Sciences, 2021, 546: 234-252.
    [28] LI S, XIANG Z. Dwell-time conditions for exponential stability and standard L1-gain performance of discrete-time singular switched positive systems with time-varying delays[J]. Nonlinear Analysis: Hybrid Systems, 2020, 38: 100939.
    [29] LI S, LIN H. On l1 stability of switched positive singular systems with time-varying delay[J]. International Journal of Robust and Nonlinear Control, 2017, 27(16): 2798-2812.
    [30] 黄金杰, 郝现志, 潘晓真. 基于模型依赖驻留时间的异步切换控制[J]. 控制与决策, 2021, 36(3): 609-618. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202103010.htm

    HUANG Jinjie, HAO Xianzhi, PAN Xiaozhen. Asynchronous switched control based on model dependent dwell time[J]. Control and Decision, 2021, 36(3): 609-618. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202103010.htm
    [31] XU S, LAM J. Robust Control and Filtering of Singular Systems[M]. Heidelberg: Springer-Verlag, 2006.
    [32] WANG J, LIANG J, ZHANG C T, et al. Event-triggered non-fragile control for uncertain positive Roesser model with PDT switching mechanism[J]. Applied Mathematics and Computation, 2021, 406(10): 126266.
  • 加载中
图(4)
计量
  • 文章访问数:  395
  • HTML全文浏览量:  203
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-08
  • 修回日期:  2022-06-17
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回