留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于L-S广义热弹性理论YSZ在超短脉冲下的热力响应

赵颐 田晓耕

赵颐, 田晓耕. 基于L-S广义热弹性理论YSZ在超短脉冲下的热力响应[J]. 应用数学和力学, 2023, 44(7): 784-796. doi: 10.21656/1000-0887.430134
引用本文: 赵颐, 田晓耕. 基于L-S广义热弹性理论YSZ在超短脉冲下的热力响应[J]. 应用数学和力学, 2023, 44(7): 784-796. doi: 10.21656/1000-0887.430134
ZHAO Yi, TIAN Xiaogeng. Thermomechanical Responses of YSZ Under Ultrashort Thermal Shock Based on the L-S Generalized Thermoelastic Theory[J]. Applied Mathematics and Mechanics, 2023, 44(7): 784-796. doi: 10.21656/1000-0887.430134
Citation: ZHAO Yi, TIAN Xiaogeng. Thermomechanical Responses of YSZ Under Ultrashort Thermal Shock Based on the L-S Generalized Thermoelastic Theory[J]. Applied Mathematics and Mechanics, 2023, 44(7): 784-796. doi: 10.21656/1000-0887.430134

基于L-S广义热弹性理论YSZ在超短脉冲下的热力响应

doi: 10.21656/1000-0887.430134
基金项目: 

国家自然科学基金项目 11732007

详细信息
    作者简介:

    赵颐(1999—),男,硕士生(E-mail: gssdzhaoyi@foxmail.com)

    通讯作者:

    田晓耕(1967—),男,教授,博士,博士生导师(通讯作者. E-mail: tiansu@mail.xjtu.edu.cn)

  • 中图分类号: O34

Thermomechanical Responses of YSZ Under Ultrashort Thermal Shock Based on the L-S Generalized Thermoelastic Theory

  • 摘要: 基于L-S广义热弹性理论,考虑材料比热容随温度变化,建立了含有内热源的热弹耦合系统控制方程. 利用有限元方法研究了氧化钇四方氧化锆(YSZ)在超短脉冲激光作用下的热力响应,获得了材料比热容随温度变化、激光的脉冲宽度等对热力响应的影响,以及机械波在材料中的反射. 研究发现,多次脉冲作用下,材料的应力、位移曲线均出现波动,力学响应对加热更加敏感,比热容随温度变化会导致热力响应降低,该研究对提高超短脉冲激光加工质量具有重要的指导作用.
  • 图  1  轮廓迂回法打孔示意图

    Figure  1.  Schematic diagram of contour roundabout punching

    图  2  杆的温度分布

    Figure  2.  Temperature distributions of the rod

    图  3  t=1时杆的应力σxx分布

    Figure  3.  Stress σxx distributions of the bar at t=1

    图  4  激光脉冲随时间的变化

    Figure  4.  The variations of laser pulses with time

    图  5  脉宽为2时的热力响应

    Figure  5.  Thermal-mechanical responses with a pulse width of 2

    图  6  脉宽为4时的热力响应

    Figure  6.  Thermal-mechanical responses with a pulse width of 4

    图  7  不同参数下的热力响应

    Figure  7.  Thermal-mechanical responses under different parameters

    图  8  比热容是否变化对热力响应的影响

    Figure  8.  Effects of the specific heat capacity change on the thermal-mechanical response

    图  9  应力σrr随时间的变化

    Figure  9.  Variations of stress σrr with time

    图  10  应力σθθ随时间的变化

    Figure  10.  Variations of stress σθθ with time

    图  11  z=10处的应力分布

    Figure  11.  Stress distributions at z=10

  • [1] 杜洋, 赵凯, 朱忠良, 等. 超快激光精密制造技术的研究与应用[J]. 激光与红外, 2020, 50(12): 1419-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202012002.htm

    DU Yang, ZHAO Kai, ZHU Zhongliang, et al. Research and application of ultrafast laser precision manufacturing technology[J]. Laser & Infrared, 2020, 50(12): 1419-1425. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202012002.htm
    [2] 温嵘, 王琦, 李璇, 等. 超快激光加工技术在航空发动机制造中的应用[J]. 电加工与模具, 2020, 55(6): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DJGU202006011.htm

    WEN Rong, WANG Qi, LI Xuan, et al. Application of ultrafast laser machining technology in aero-engine manufacturing[J]. Electric Machining and Touch Tools, 2020, 55(6): 56-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJGU202006011.htm
    [3] PHILLIPS K C, GANDHI H H, MAZUR E, et al. Ultrafast laser processing of materials: a review[J]. Advances in Optics and Photonics, 2015, 7(4): 684-712. doi: 10.1364/AOP.7.000684
    [4] 周可平, 何林美, 赵晓梅, 等. 飞秒激光新技术的应用研究[J]. 航空精密制造技术, 2020, 56(6): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZJ202006009.htm

    ZHOU Keping, HE Linmei, ZHAO Xiaomei, et al. Application of femtosecond laser technology[J]. Aviation Precision Manufacturing Technology, 2020, 56(6): 34-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJZJ202006009.htm
    [5] SHEN H, FENG D. Thermal and mechanical behavior in laser trepan drilling of yttria-stabilized zirconia[J]. Journal of Heat Transfer, 2019, 141(4): 042101. doi: 10.1115/1.4042778
    [6] 秦渊, 毕娟, 倪晓武, 等. 毫秒激光金属打孔的解析和实验[J]. 光学精密工程, 2011, 19(2): 340-347. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201102018.htm

    QIN Yuan, BI Juan, NI Xiaowu, et al. Analysis and experiment of metal drilling by millisecond laser[J]. Optics and Precision Engineering, 2011, 19(2): 340-347. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201102018.htm
    [7] 赵万芹, 梅雪松, 王文君. 超短脉冲激光微孔加工(上): 理论研究[J]. 红外与激光工程, 2019, 48(1): 140-148. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201902019.htm

    ZHAO Wanqin, MEI Xuesong, WANG Wenjun. Ultra-short pulse laser microhole machining (part Ⅰ): theoretical study[J]. Infrared and Laser Engineering, 2019, 48(1): 140-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201902019.htm
    [8] CHENG J, LIU C S, SHANG S, et al. A review of ultrafast laser materials micromachining[J]. Optics and Laser Technology, 2013, 46(1): 88-102.
    [9] RAHAMAN A, DU X, ZHOU B, et al. Absorption and temperature distribution during ultrafast laser microcutting of polymeric materials[J]. Journal of Laser Applications, 2020, 32(2): 022044. doi: 10.2351/7.0000080
    [10] RAHAMAN A, KAR A, YU X. Thermal effects of ultrafast laser interaction with polypropylene[J]. Opt Express, 2019, 27(4): 5764-5783. doi: 10.1364/OE.27.005764
    [11] 田晓耕, 沈亚鹏. 广义热弹性问题研究进展[J]. 力学进展, 2012, 42(1): 18-28. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201201004.htm

    TIAN Xiaogeng, SHEN Yapeng. Advances in generalized thermoelastic problems[J]. Advances in Mechanics, 2012, 42(1): 18-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201201004.htm
    [12] 包立平, 胡玉博, 吴立群. 具有初值间断的Burgers方程奇摄动解[J]. 应用数学和力学, 2020, 41(7): 807-816. doi: 10.21656/1000-0887.400270

    BAO Liping, HU Yubo, WU Liqun. Singularly perturbed solutions of burgers equations with initial value discontinuities[J]. Applied Mathematics and Mechanics, 2020, 41(7): 807-816. (in Chinese) doi: 10.21656/1000-0887.400270
    [13] 谭胜, 吴建军, 黄强, 等. 基于双相延迟模型的飞秒激光烧蚀金属模型[J]. 物理学报, 2019, 68(5): 233-244. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201905027.htm

    TAN Sheng, WU Jianjun, HUANG Qiang, et al. A femtosecond laser ablation model based on two-phase delay model[J]. Acta Physica Sinica, 2019, 68(5): 233-244. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201905027.htm
    [14] TZOU D Y. A unified field approach for heat conduction from macro-to micro-scales[J]. Journal of Heat Transfer, 1995, 117(1): 8-16.
    [15] XIONG Q L, LI Z H, TIAN X G. Ultrafast thermomechanical responses of a copper film under femtosecond laser trains: a molecular dynamics study[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471(2184). DOI: 10.1098/rspa.2015.0614.
    [16] LI Y, LI C, YAO W, et al. Solid-to-super-critical phase change and resulting stress wave during internal laser ablation[J]. Journal of Thermal Stresses, 2018, 41(10/12): 1364-1379.
    [17] CATTANEO C. Sulla conduzione del calore[C]//Attidel Seminario Matematico e Fisicodella Università di Modena. Vol 3. 1948: 83-101.
    [18] VERNOTTE P. Les paradoxes de la theorie continue de l'equation de la chaleur[J]. Comptes Rendus, 1958, 246: 3154-3155.
    [19] LORD H W, SHULMAN Y. A generalized dynamical theory of thermoelasticity[J]. Journal of the Mechanics and Physics of Solids, 1967, 15(5): 299-309.
    [20] 何天虎, 曹丽, 周又和. 受移动热源作用的两端固定杆的广义热-弹耦合问题[J]. 工程力学, 2008, 25(5): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200805008.htm

    HE Tianhu, CAO Li, ZHOU Youhe. Generalized thermal-elastic coupling problem of fixed rod with two ends subjected to moving heat source[J]. Engineering Mechanics, 2008, 25(5): 22-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200805008.htm
    [21] WANG X, XU X. Thermoelastic wave induced by pulsed laser heating[J]. Applied Physics A: Materials Science & Processing, 2001, 73(1): 107-114.
    [22] 黄飞, 马永斌. 移动热源作用下基于分数阶应变的三维弹性体热-机响应[J]. 应用数学和力学, 2021, 42(4): 373-384. doi: 10.21656/1000-0887.400346

    HUANG Fei, MA Yongbin. Thermomechanical responses of 3D media under moving heat sources based on fractional-order strains[J]. Applied Mathematics and Mechanics, 2021, 42(4): 373-384. (in Chinese) doi: 10.21656/1000-0887.400346
    [23] 马永斌, 李东升. 考虑记忆效应及尺寸效应窄长薄板的磁-热弹性耦合动态响应[J]. 应用数学和力学, 2022, 43(8): 888-900. doi: 10.21656/1000-0887.420200

    MA Yongbin, LI Dongsheng. Magneto-thermoelastic coupling dynamic responses of narrow long thin plates under memory effects and size effects[J]. Applied Mathematics and Mechanics, 2022, 43(8): 888-900. (in Chinese) doi: 10.21656/1000-0887.420200
    [24] EL-KARAMANY A S, EZZAT M A. Thermal shock problem in generalized thermo-viscoelasticty under four theories[J]. International Journal of Engineering Science, 2004, 42(7): 649-671.
    [25] 熊春宝, 郭颖, 刁钰, 等. 荷载作用下多孔饱和地基的热-水-力耦合动力响应分析[J]. 计算力学学报, 2018, 35(6): 795-801. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201806021.htm

    XIONG Chunbao, GUO Ying, DIAO Yu, et al. Analysis of thermal-hydro-mechanical coupling dynamic response of porous saturated foundation under load[J]. Chinese Journal of Computational Mechanics, 2018, 35(6): 795-801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201806021.htm
    [26] ABO-DAHAB S, ABD-ALLA A, ALQARNI A J. A two-dimensional problem with rotation and magnetic field in the context of four thermoelastic theories[J]. Results in Physics, 2017, 7: 2742-2751.
    [27] ALOTAIBI H, ABO-DAHAB S, KHALIL E, et al. Mathematical modeling on rotational magneto-thermoelastic phenomenon under gravity and laser pulse considering four theories[J]. Complexity, 2021, 2021: 5521684.
    [28] DESWAL S, KALKAL K. A two-dimensional generalized electro-magneto-thermoviscoelastic problem for a half-space with diffusion[J]. International Journal of Thermal Sciences, 2011, 50(5): 749-759.
    [29] CHASE JR M W. NIST-JANAF thermochemical tables[C]//Journal of Physical and Chemical Reference Data. Monograph 9, 1998.
    [30] VEDAVARZ A, KUMAR S, MOALLEMI M K. Significance of non-fourier heat waves in conduction[J]. Journal of Heat Transfer, 1994, 116(1): 221-224.
    [31] ZHENG C, ZHAO K, SHEN H, et al. Crack behavior in ultrafast laser drilling of thermal barrier coated nickel superalloy[J]. Journal of Materials Processing Technology, 2020, 282: 116678.
    [32] 关振铎, 张中太, 焦金牛. 无机材料物理性能[M]. 北京: 清华大学出版社, 2011: 87-117.

    GUAN Zhenduo, ZHANG Zhongtai, JIAO Jinniu. Physical Properties of Inorganic Materials[M]. Beijing: Tsinghua University Press, 2011: 87-117. (in Chinese)
    [33] 徐辉, 邓建兵, 沈江立. 固体材料比热容随温度变化规律的研究[J]. 宇航材料工艺, 2011, 41(5): 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-YHCG201105020.htm

    XU Hui, DENG Jianbing, SHEN Jiangli. Study on specific heat capacity of solid materials with temperature variation[J]. Aerospace Materials & Technology, 2011, 41(5): 74-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YHCG201105020.htm
    [34] 单水维. Y2O3稳定ZrO2陶瓷材料导热性能的研究[D]. 硕士学位论文. 包头: 内蒙古科技大学, 2007.

    SHAN Shuiwei. Study on thermal conduction properties of yttria-stabilized zirconia ceramic material[D]. Master Thesis. Baotou: Inner Mongolia University of Science & Technology, 2007. (in Chinese)
  • 加载中
图(11)
计量
  • 文章访问数:  498
  • HTML全文浏览量:  151
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-14
  • 修回日期:  2022-07-06
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回