留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

移动荷载作用下具有不确定参数桥梁动力响应分析

刘凡 李利祥 赵岩

刘凡,李利祥,赵岩. 移动荷载作用下具有不确定参数桥梁动力响应分析 [J]. 应用数学和力学,2023,44(3):241-247 doi: 10.21656/1000-0887.430148
引用本文: 刘凡,李利祥,赵岩. 移动荷载作用下具有不确定参数桥梁动力响应分析 [J]. 应用数学和力学,2023,44(3):241-247 doi: 10.21656/1000-0887.430148
LIU Fan, LI Lixiang, ZHAO Yan. Dynamic Responses Analysis of Bridges With Uncertain Parameters Under  Moving Loads[J]. Applied Mathematics and Mechanics, 2023, 44(3): 241-247. doi: 10.21656/1000-0887.430148
Citation: LIU Fan, LI Lixiang, ZHAO Yan. Dynamic Responses Analysis of Bridges With Uncertain Parameters Under  Moving Loads[J]. Applied Mathematics and Mechanics, 2023, 44(3): 241-247. doi: 10.21656/1000-0887.430148

移动荷载作用下具有不确定参数桥梁动力响应分析

doi: 10.21656/1000-0887.430148
基金项目: 国家自然科学基金(11772084;U1906233);国家重点研发计划(2017YFC0307203);山东省重点研发计划(2019JZZY010801)
详细信息
    作者简介:

    刘凡(1992—),男,博士生(E-mail:dlut_liufan@mail.dlut.edu.cn

    赵岩(1974—),男,教授,博士,博士生导师(通讯作者. E-mail:yzhao@dlut.edu.cn

  • 中图分类号: O321

Dynamic Responses Analysis of Bridges With Uncertain Parameters Under  Moving Loads

  • 摘要:

    针对具有不确定参数桥梁在移动荷载作用下的动力响应分析,首次建立了移动荷载作用下桥梁响应分析的多项式维数分解法。将结构的不确定参数视为独立的随机变量,构造了结构动力响应关于不确定参数的随机函数;进而采用一组变量数目逐次增加的成员函数实现结构动力响应的维数分解,并利用Fourier多项式展开推导成员函数的近似显式表达。通过降维积分方法降低概率空间内的积分维度,高效地实现了展开系数的计算。在数值算例中,进行了具有不确定参数桥梁在移动荷载作用下的响应估计,并与Monte-Carlo模拟进行对比,验证了该文方法的精确性和效率。

  • 图  1  受移动集中荷载作用的简支梁桥

    Figure  1.  A simply supported beam bridge subjected to moving loads

    图  2  桥梁跨中位移均值

    Figure  2.  The mean of displacement

    图  3  桥梁跨中位移标准差

    Figure  3.  The SD of displacement

    图  4  $ t=0.8\;\mathrm{s} $时跨中位移的概率密度

    Figure  4.  The probability density of displacement at $ t=0.8\;\mathrm{s} $

    图  5  位移样本曲线

    Figure  5.  Sample curves of displacement

    图  6  大跨度斜拉桥

    Figure  6.  The long-span cable-stayed bridge

    图  7  位移均值

    Figure  7.  The mena of displacement

    图  8  位移标准差

    Figure  8.  The SD of displacement

    图  9  $ t=10.60\;\mathrm{s} $时的概率密度

    Figure  9.  The probability density at $ t=10.60\;\mathrm{s} $

    图  10  概率密度演化曲线

    Figure  10.  Evolution curves of the probability density

  • [1] 高庆飞, 张坤, 刘晨光, 等. 移动车辆荷载作用下桥梁冲击系数的若干讨论[J]. 哈尔滨工业大学学报, 2020, 52(3): 44-50 doi: 10.11918/201903144

    GAO Qingfei, ZHANG Kun, LIU Chenguang, et al. Discussions on the impact of bridges subjected to moving vehicular loads[J]. Journal of Harbin Institute of Technology, 2020, 52(3): 44-50.(in Chinese) doi: 10.11918/201903144
    [2] LAI Z P, JING L Z, ZHOU W B. An analytical study on dynamic response of multiple simply supported beam system subjected to moving loads[J]. Shock and Vibration, 2018, 2018: 2149251.
    [3] LIU S H, JIANG L Z, ZHOU W B, et al. Dynamic response analysis of multi-span bridge-track structure system under moving loads[J]. Mechanics Based Design of Structures and Machines, 2021. DOI: 10.1080/ 15397734.2021.2010569.
    [4] 阳霞, 张静, 任伟新, 等. 车辆荷载作用下桥梁应变极值估计的阈值选取[J]. 应用数学和力学, 2017, 38(5): 503-512

    YANG Xia, ZHANG Jing, REN Weixin, et al. Threshold selection for the extreme value estimation of bridge strain under vehicle load[J]. Applied Mathematics and Mechanics, 2017, 38(5): 503-512.(in Chinese)
    [5] CHANG T P. Stochastic dynamic finite element analysis of bridge-vehicle system subjected to random material properties and loadings[J]. Applied Mathematics & Computation, 2014, 242: 20-35.
    [6] NI P, XIA Y, LI J, et al. Using polynomial chaos expansion for uncertainty and sensitivity analysis of bridge structures[J]. Mechanical Systems and Signal Processing, 2019, 119: 293-311. doi: 10.1016/j.ymssp.2018.09.029
    [7] WU S Q, LAW S S. Evaluating the response statistics of an uncertain bridge-vehicle system[J]. Mechanical Systems and Signal Processing, 2012, 27: 576-589. doi: 10.1016/j.ymssp.2011.07.019
    [8] WU S Q, LAW S S. A reduced polynomial chaos expansion model for stochastic analysis of a moving load on beam system with non-Gaussian parameters[J]. Journal of Vibroengineering, 2015, 17(3): 1560-1577.
    [9] 万华平, 邰永敢, 钟剑, 等. 基于多项式混沌展开的结构动力特性高阶统计矩计算[J]. 应用数学和力学, 2018, 39(12): 1331-1342

    WAN Huaping, TAI Yonggan, ZHONG Jian, et al. Computation of high-order moments of structural dynamic characteristics based on polynomial chaos expansion[J]. Applied Mathematics and Mechanics, 2018, 39(12): 1331-1342.(in Chinese)
    [10] RAHMAN S. A polynomial dimensional decomposition for stochastic computing[J]. International Journal for Numerical Methods in Engineering, 2008, 76(13): 2091-2116. doi: 10.1002/nme.2394
    [11] RAHMAN S. Probability distributions of natural frequencies of uncertain dynamic systems[J]. AIAA Journal, 2009, 47(6): 1579-1589. doi: 10.2514/1.42720
    [12] LU K. Statistical moment analysis of multi-degree of freedom dynamic system based on polynomial dimensional decomposition method[J]. Nonlinear Dynamics, 2018, 93: 2003-2018. doi: 10.1007/s11071-018-4303-1
    [13] LIU F, ZHAO Y. A hybrid method for analysing stationary random vibration of structures with uncertain parameters[J]. Mechanical Systems and Signal Processing, 2022, 164: 108259. doi: 10.1016/j.ymssp.2021.108259
    [14] RAHMAN S. Global sensitivity analysis by polynomial dimensional decomposition[J]. Reliability Engineering and System Safety, 2011, 96(7): 825-837. doi: 10.1016/j.ress.2011.03.002
    [15] XU H, RAHMAN S. A generalized dimension-reduction method for multidimensional integration in stochastic mechanics[J]. International Journal of Numerical Method in Engineering, 2004, 61(12): 1992-2019. doi: 10.1002/nme.1135
  • 加载中
图(10)
计量
  • 文章访问数:  540
  • HTML全文浏览量:  231
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-27
  • 修回日期:  2022-06-17
  • 网络出版日期:  2023-03-20
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回