留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SAV/重心插值配点法求解Allen-Cahn方程

黄蓉 邓杨芳 翁智峰

黄蓉, 邓杨芳, 翁智峰. SAV/重心插值配点法求解Allen-Cahn方程[J]. 应用数学和力学, 2023, 44(5): 573-582. doi: 10.21656/1000-0887.430149
引用本文: 黄蓉, 邓杨芳, 翁智峰. SAV/重心插值配点法求解Allen-Cahn方程[J]. 应用数学和力学, 2023, 44(5): 573-582. doi: 10.21656/1000-0887.430149
HUANG Rong, DENG Yangfang, WENG Zhifeng. The SAV Scheme Based on the Barycentric Interpolation Collocation Method for the Allen-Cahn Equation[J]. Applied Mathematics and Mechanics, 2023, 44(5): 573-582. doi: 10.21656/1000-0887.430149
Citation: HUANG Rong, DENG Yangfang, WENG Zhifeng. The SAV Scheme Based on the Barycentric Interpolation Collocation Method for the Allen-Cahn Equation[J]. Applied Mathematics and Mechanics, 2023, 44(5): 573-582. doi: 10.21656/1000-0887.430149

SAV/重心插值配点法求解Allen-Cahn方程

doi: 10.21656/1000-0887.430149
我刊编委赵景军推荐
基金项目: 

国家自然科学基金项目 11701197

中央高校基本科研业务费 ZQN-702

详细信息
    作者简介:

    黄蓉(1995—),女,硕士生(E-mail: hraccount@163.com)

    邓杨芳(1997—),女,硕士生(E-mail: hqudeng@163.com)

    通讯作者:

    翁智峰(1985—),男,副教授(通讯作者. E-mail: zfwmath@163.com)

  • 中图分类号: O241.82

The SAV Scheme Based on the Barycentric Interpolation Collocation Method for the Allen-Cahn Equation

Recommended by ZHAO Jingjun, M. AMM Editorial Board
  • 摘要: 采用标量辅助变量(scalar auxiliary variable, SAV)方法结合重心插值配点法求解二维Allen-Cahn方程. 在时间方向上分别采用Crank-Nicolson格式、二阶向后差分格式离散,空间方向上采用重心Lagrange插值配点法离散,建立了两种无条件能量稳定SAV格式,并给出了重心插值配点格式的逼近性质. 数值实验表明:两种SAV配点格式的时间收敛阶为二阶,并满足能量递减规律. 与空间采用有限差分法离散对比,重心Lagrange配点格式具有指数收敛的特性.
    1)  我刊编委赵景军推荐
  • 图  1  不同数值格式的能量演化图(ε=0.1)

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  Time evolution curves of the free energy of different schemes(ε=0.1)

    图  2  不同数值格式的空间收敛阶

    Figure  2.  The convergence rates in space of different numerical schemes

    图  3  在不同时刻的数值快照(ε=0.06)

    Figure  3.  Snapshots of the numerical approximation at different moments(ε=0.06)

    图  4  相变u在不同时刻的快照图(算例3)

    Figure  4.  Snapshots of the phase field u at different moments for example 3

    图  5  u的数值解在不同时刻的快照(算例4)

    Figure  5.  Snapshots of the numerical approximation of u at different moments for example 4

    表  1  采用CN2-BLI、BDF2-BLI格式求解uL2误差

    Table  1.   The L2 errors of u solved by CN2-BLI and BDF2-BLI schemes

    τ CN2-BLI order BDF2-BLI order
    1.6×10-3 9.55×10-6 - 1.59×10-5 -
    8×10-4 2.38×10-6 2.00 3.97×10-6 2.00
    4×10-4 5.96×10-7 2.00 9.91×10-7 2.00
    2×10-4 1.49×10-7 2.00 2.48×10-7 2.00
    1×10-4 3.84×10-8 1.96 6.34×10-8 1.97
    下载: 导出CSV

    表  2  不同空间离散方案的精度对比结果

    Table  2.   The accuracy comparison of different discretization schemes in space

    (M, N) CN2-BLI (M, N) BDF2-BLI (M, N) CN2-FD
    (8, 8) 3.25×10-4 (8, 8) 3.25×10-4 (40, 40) 2.54×10-3
    (9, 9) 4.43×10-5 (9, 9) 4.43×10-5 (60, 60) 1.13×10-3
    (10, 10) 6.57×10-6 (10, 10) 6.57×10-6 (80, 80) 6.34×10-4
    (12, 12) 1.18×10-7 (12, 12) 1.09×10-7 (100, 100) 4.06×10-4
    (15, 15) 2.98×10-8 (15, 15) 4.68×10-8 (120, 120) 2.82×10-4
    下载: 导出CSV
  • [1] ALLEN S, CAHN J. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J]. Acta Metallurgica, 1979, 27(6): 1085-1095. doi: 10.1016/0001-6160(79)90196-2
    [2] BENNES M, CHALUPECKY V, MIKULA K. Geometrical image segmentation by the Allen-Cahn equation[J]. Applied Numerical Mathematics, 2004, 51(2-3): 187-205. doi: 10.1016/j.apnum.2004.05.001
    [3] KOBAYASHI R. Physicai modeling and numerical simulations of dendritic crystal growth[J]. Physica D: Nonlinear Phenomena, 1993, 63(3/4): 410-423. doi: 10.1016/0167-2789(93)90120-p
    [4] FENG X B, PROHL A. Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows[J]. Numerische Mathematik, 2003, 94(1): 33-65. doi: 10.1007/s00211-002-0413-1
    [5] DU Q, YANG J. Asymptotically compatible Fourier spectral approximations of nonlocal Allen-Cahn equations[J]. SIAM Journal on Numerical Analysis, 2016, 54(3): 1899-1919. doi: 10.1137/15M1039857
    [6] ZHAI S, FENG X, HE Y. Numerical simulation of the three dimensional Allen-Cahn equation by the high-order compact ADI method[J]. Computer Physics Communications, 2014, 185(10): 2449-2455. doi: 10.1016/j.cpc.2014.05.017
    [7] WENG Z, TANG L. Analysis of the operator splitting scheme for the Allen-Cahn equation[J]. Numerical Heat Transfer (Part B): Fundamentals, 2016, 70(5): 472-483. doi: 10.1080/10407790.2016.1215714
    [8] LI C, HUANG Y, YI N. An unconditionally energy stable second order finite element method for solving the Allen-Cahn equation[J]. Journal of Computational and Applied Mathematics, 2019, 353: 38-48. doi: 10.1016/j.cam.2018.12.024
    [9] LIAO H, TANG T, ZHOU T. On energy stable, maximum-principle preserving, second order BDF scheme with variable steps for the Allen-Cahn equation[J]. SIAM Journal on Numerical Analysis, 2020, 58(4): 2294-2314. doi: 10.1137/19M1289157
    [10] LI H, SONG Z, HU J. Numerical analysis of a second-order IPDGFE method for the Allen-Cahn equation and the curvature-driven geometric flow[J]. Computers & Mathematics With Applications, 2021, 86: 49-62.
    [11] LI J, JU L, CAI Y, et al. Unconditionally maximum bound principle preserving linear schemes for the conservative Allen-Cahn equation with nonlocal constraint[J]. Journal of Scientific Computing, 2021, 87(3): 1-32. doi: 10.1007/s10915-021-01512-0
    [12] 汪精英, 翟术英. 分数阶Cahn-Hilliard方程的高效数值算法[J]. 应用数学和力学, 2021, 42(8): 832-840. doi: 10.21656/1000-0887.420008

    WANG Jingying, ZHAI Shuying. Efficient numerical algorithm for the fractional Cahn-Hilliard equation[J]. Applied Mathematics and Mechanics, 2021, 42(8): 832-840. (in Chinese) doi: 10.21656/1000-0887.420008
    [13] 曾维鸿, 傅卓佳, 汤卓超. 水槽动力特性数值模拟的新型局部无网格配点法[J]. 应用数学和力学, 2022, 43(4): 392-400. doi: 10.21656/1000-0887.420246

    ZENG Weihong, FU Zhuojia, TANG Zhuochao. A novel localized meshless collocation method for numerical simulation of flume dynamic characteristics[J]. Applied Mathematics and Mechanics, 2022, 43(4): 392-400. (in Chinese) doi: 10.21656/1000-0887.420246
    [14] 吴迪, 李小林. 时间分数阶扩散波方程的无单元Galerkin法分析[J]. 应用数学和力学, 2022, 43(2): 215-223. doi: 10.21656/1000-0887.420172

    WU Di, LI Xiaolin. An element-free Galerkin method for time-fractional diffusion-wave equations[J]. Applied Mathematics and Mechanics, 2022, 43(2): 215-223. (in Chinese) doi: 10.21656/1000-0887.420172
    [15] 王兆清, 徐子康. 基于平面问题的位移压力混合配点法[J]. 计算物理, 2018, 35(1): 77-86. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL201801010.htm

    WANG Zhaoqing, XU Zikang. Displacement pressure mixed collocation method based on plane problem[J]. Computational physics, 2018, 35(1): 77-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL201801010.htm
    [16] HU Y, PENG A, CHEN L, et al. Analysis of the barycentric interpolation collocation scheme for the Burgers equation[J]. Science Asia, 2021, 47(6): 758.
    [17] DAREHMIRAKI M, REZAZADEH A, AHMADIAN A, et al. An interpolation method for the optimal control problem governed by the elliptic convection-diffusion equation[J]. Numerical Methods for Partial Differential Equations, 2022, 38(2): 137-159. doi: 10.1002/num.22625/abstract
    [18] DENG Y, WENG Z. Barycentric interpolation collocation method based on Crank-Nicolson scheme for the Allen-Cahn equation[J]. AIMS Mathematics, 2021, 6(4): 3857-3873. http://www.researchgate.net/publication/348874624_Barycentric_interpolation_collocation_method_based_on_Crank-Nicolson_scheme_for_the_Allen-Cahn_equation
    [19] LIU H, HUANG J, ZHANG W, et al. Meshfree approach for solving multi-dimensional systems of Fredholm integral equations via barycentric Lagrange interpolation[J]. Applied Mathematics and Computation, 2019, 346: 295-304. http://www.onacademic.com/detail/journal_1000040906451410_249d.html
    [20] YI S, YAO L. A steady barycentric Lagrange interpolation method for the 2D higher-order time fractional telegraph equation with nonlocal boundary condition with error analysis[J]. Numerical Methods for Partial Differential Equations, 2019, 35(5): 1694-1716. http://www.sciencedirect.com/science/article/pii/S096007791930267X
    [21] SHEN J, XU J, YANG J. The scalar auxiliary variable (SAV) approach for gradient flows[J]. Journal of Computational Physics, 2018, 353: 407-416. http://www.math.purdue.edu/~shen/pub/SXY17.pdf
    [22] HUANG F, SHEN J, YANG Z. A highly efficient and accurate new scalar auxiliary variable approach for gradient flows[J]. SIAM Journal on Scientific Computing, 2020, 42(4): A2514-A2536.
    [23] CHENG Q, LIU C, SHEN J. Generalized SAV approaches for gradient systems[J]. Journal of Computational and Applied Mathematics, 2021, 394: 113532. http://www.sciencedirect.com/science/article/pii/S0377042721001515
    [24] LI X, SHEN J. Stability and error estimates of the SAV Fourier-spectral method for the phase field crystal equation[J]. Advances in Computational Mathematics, 2020, 46(3): 48. http://www.xueshufan.com/publication/3031773824
    [25] SHEN J, XU J. Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows[J]. SIAM Journal on Numerical Analysis, 2018, 56(5): 2895-2912. http://www.nstl.gov.cn/paper_detail.html?id=b274cd7358273bcdbfd1fa987c6fdfd3
    [26] KLEIN G, BERRUT J. Linear rational finite differences from derivatives of barycentric rational interpolants[J]. SIAM Journal on Numerical Analysis, 2012, 50(2): 643-656. http://d.wanfangdata.com.cn/periodical/88c1707a69313eb241ecc25eea2bfcd3
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  578
  • HTML全文浏览量:  144
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-27
  • 修回日期:  2022-06-11
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回