留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扩展多面体组合单元的非规则颗粒材料离散元方法

李典哲 刘璐 季顺迎

李典哲, 刘璐, 季顺迎. 基于扩展多面体组合单元的非规则颗粒材料离散元方法[J]. 应用数学和力学, 2023, 44(7): 769-783. doi: 10.21656/1000-0887.430152
引用本文: 李典哲, 刘璐, 季顺迎. 基于扩展多面体组合单元的非规则颗粒材料离散元方法[J]. 应用数学和力学, 2023, 44(7): 769-783. doi: 10.21656/1000-0887.430152
LI Dianzhe, LIU Lu, JI Shunying. A Discrete Element Method for Irregular Granular Materials Based on Multi-Dilated Polyhedron Elements[J]. Applied Mathematics and Mechanics, 2023, 44(7): 769-783. doi: 10.21656/1000-0887.430152
Citation: LI Dianzhe, LIU Lu, JI Shunying. A Discrete Element Method for Irregular Granular Materials Based on Multi-Dilated Polyhedron Elements[J]. Applied Mathematics and Mechanics, 2023, 44(7): 769-783. doi: 10.21656/1000-0887.430152

基于扩展多面体组合单元的非规则颗粒材料离散元方法

doi: 10.21656/1000-0887.430152
基金项目: 

国家重点研发计划(重点专项) 2021YFA1500302

国家重点研发计划(重点专项) 2018YFA0605902

国家自然科学基金项目 42176241

详细信息
    作者简介:

    李典哲(1999—),女,硕士生(E-mail: lidianzhe@mail.dlut.edu.cn)

    通讯作者:

    季顺迎(1972—), 男, 博士, 教授(通讯作者. E-mail: jisy@dlut.edu.cn)

  • 中图分类号: O347.7

A Discrete Element Method for Irregular Granular Materials Based on Multi-Dilated Polyhedron Elements

  • 摘要: 非规则颗粒材料广泛地存在于自然界和工业生产中,其复杂的几何形态对力学性质有显著的影响. 为构建更接近真实颗粒形态的理论模型,以扩展多面体为基本单元,发展了扩展多面体组合单元. 为验证扩展多面体组合单元的可靠性,分别对凸形三棱柱单元、凹形正倒锥体单元在平底漏斗中的卸料过程进行了离散元模拟,并与试验结果进行比较分析,得到其具有较好的一致性. 在此基础上,对不同形态的组合单元进行堆积和卸料离散元模拟,研究了颗粒形状对堆积分数、卸料流量和休止角的影响. 结果表明,颗粒形状越复杂,颗粒之间的互锁效应越显著,颗粒系统更加稳定. 扩展多面体组合单元的有效应用,为离散元数值模拟描述任意形态颗粒材料提供了一种新的构建方法.
  • 图  1  由不同扩展半径球体与多面体构造的扩展多面体单元

    Figure  1.  Dilated polyhedrons composed of various dilated spheres and polyhedrons

    图  2  不同形态的扩展多面体组合单元

    Figure  2.  Multi-dilated polyhedron elements with various shapes

    图  3  基于背景网格法的组合单元质量和惯性矩计算

    Figure  3.  Calculation of the mass and the moment of inertia for multi-dilated polyhedrons

    图  4  扩展多面体组合单元间的接触判断

    Figure  4.  The contact detection between multi-dilated polyhedrons

    图  5  凸形三棱柱单元和凹形正倒锥体单元

    Figure  5.  The convex triangular prism element and the concave upward-downward conical element

    图  6  平底漏斗几何形状(单位:m)

    Figure  6.  The geometry shape of the flat bottom hopper (unit: m)

    图  7  凸形三棱柱单元卸料过程的离散元模拟与试验对比

    Figure  7.  The convex triangular prism element's discharge process simulated with the DEM and compared with the physical experimental results

    图  8  凹形正倒锥体单元卸料过程的离散元模拟与试验对比

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  8.  The concave upward-downward conical element's discharge process simulated with the DEM and compared with the physical experimental results

    图  9  卸料过程漏斗剩余颗粒比例随时间变化

    Figure  9.  The time histories of the residual particle fractions during hopper discharge

    图  10  不同形态的扩展多面体组合单元

    Figure  10.  Multi-dilated polyhedrons with various shapes

    图  11  扩展多面体组合单元形成的稳定颗粒床

    Figure  11.  Stable granular beds composed of multi-dilated polyhedrons

    图  12  颗粒形状对堆积分数的影响

    Figure  12.  Effects of particle shapes on the piling fraction

    图  13  不同时刻下组合单元的卸料过程

    Figure  13.  Discharging processes of multi-dilated polyhedrons at different moments

    图  14  卸料漏斗的几何尺寸

    Figure  14.  The geometry shape of the hopper model

    图  15  颗粒形状对流动和堆积特性的影响

    Figure  15.  Effects of particle shapes on the flow and packing characteristics

    表  1  两种扩展多面体组合单元的主要计算参数

    Table  1.   Major geometric and physical parameters of the triangular prism and the upward-downward conical elements

    parameter symbol triangular prism element upward-downward conical element
    element mass m/g 0.346 9 0.347 0
    density ρ/(kg/m3) 652 1 283
    dilating radius r/mm 0.1 0.1
    friction coefficient μ 0.3 0.3
    Young’s modulus E/GPa 1.0 1.0
    Poisson’s ratio ν 0.3 0.3
    下载: 导出CSV

    表  2  扩展多面体组合单元的主要几何和物理参数

    Table  2.   Major geometric and physical parameters of multi-dilated polyhedrons

    parameter value parameter value
    density ρ/(kg/m3) 2 500 Poisson’s ratio ν 0.3
    Young’s modulus E/GPa 10 friction coefficient μ 0.3
    dilating radius r/m 0.02 restitution coefficient η 0.3
    下载: 导出CSV
  • [1] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47
    [2] KRUGGEL-EMDEN H, RICKELT S, WIRTZ S, et al. A study on the validity of the multi-sphere discrete element method[J]. Powder Technology, 2008, 188(2): 153-165. doi: 10.1016/j.powtec.2008.04.037
    [3] FERELLEC J F, MCDOWELL G R. A simple method to create complex particle shapes for DEM[J]. Geomechanics and Geoengineering: an International Journal, 2008, 3(3): 211-216. doi: 10.1080/17486020802253992
    [4] HOHNER D, WIRTZ S, SCHERER V. A numerical study on the influence of particle shape on hopper discharge within the polyhedral and multi-sphere discrete element method[J]. Powder Technology, 2012, 226: 16-28. doi: 10.1016/j.powtec.2012.03.041
    [5] KHAZENI A, MANSOURPOUR Z. Influence of non-spherical shape approximation on DEM simulation accuracy by multi-sphere method[J]. Powder Technology, 2018, 332: 265-278. doi: 10.1016/j.powtec.2018.03.030
    [6] LU L Q, GAO X, SHAHNAM M, et al. Simulations of biomass pyrolysis using glued-sphere CFD-DEM with 3-D intra-particle models[J]. Chemical Engineering Journal, 2021, 419(6): 129564.
    [7] ZHOU L, YU J Q, LIANG L S, et al. Study on key issues in the modelling of maize seeds based on the multi-sphere method[J]. Powder Technology, 2021, 394: 791-812. doi: 10.1016/j.powtec.2021.09.020
    [8] 任石磊, 韩飞鹏, 谢斌, 等. 基于三维CFD-DEM的多孔介质流场数值模拟[J]. 应用数学和力学, 2017, 38(10): 1093-1102. doi: 10.21656/1000-0887.370326

    REN Shilei, HAN Feipeng, XIE Bin, et al. Numerical simulation of flow fields in porous media based on the 3D CFD-DEM[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1093-1102. (in Chinese) doi: 10.21656/1000-0887.370326
    [9] 边学成, 李伟, 李公羽, 等. 基于颗粒真实几何形状的铁路道砟剪切过程三维离散元分析[J]. 工程力学, 2015, 32(5): 64-75. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201505010.htm

    BIAN Xuecheng, LI Wei, LI Gongyu, et al. Three-dimensional discrete element analysis of railway ballast's shear process based on particles' real geometry[J]. Engineering Mechanics, 2015, 32(5): 64-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201505010.htm
    [10] 罗滔, 李刚, OOI E T, 等. 堆石体宏细观力学特性演化机制的离散元模拟[J]. 武汉大学学报(工学版), 2018, 51(7): 607-612. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201807007.htm

    LUO Tao, LI Gang, OOI E T, et al. DEM modelling of macro-and meso-mechanisms for rockfill materials[J]. Engineering Journal of Wuhan University, 2018, 51(7): 607-612. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201807007.htm
    [11] ZHAO B, AN X Z, WANG Y, et al. Packing of different shaped tetrahedral particles: DEM simulation and experimental study[J]. Powder Technology, 2020, 360: 21-32. doi: 10.1016/j.powtec.2019.09.072
    [12] PODLOZHNYUK A, PIRKER S, KLOSS C. Efficient implementation of superquadric particles in discrete element method within an open-source framework[J]. Computational Particle Mechanics, 2017, 4(1): 101-118. doi: 10.1007/s40571-016-0131-6
    [13] 王蕴嘉, 宋二祥. 堆石料颗粒形状对堆积密度及强度影响的离散元分析[J]. 岩土力学, 2019, 40(6): 2416-2426. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906042.htm

    WANG Yunjia, SONG Erxiang. Discrete element analysis of the particle shape effect on packing density and strength of rockfills[J]. Rock and Soil Mechanics, 2019, 40(6): 2416-2426. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906042.htm
    [14] 张成功, 尹振宇, 吴则祥, 等. 颗粒形状对粒状材料圆柱塌落影响的三维离散元模拟[J]. 岩土力学, 2019, 40(3): 1197-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903041.htm

    ZHANG Chenggong, YIN Zhenyu, WU Zexiang, et al. Three-dimensional discrete element simulation of influence of particle shape on granular column collapse[J]. Rock and Soil Mechanics, 2019, 40(3): 1197-1203. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903041.htm
    [15] HOHNER D, WIRTZ S, SCHERER V. A study on the influence of particle shape on the mechanical interactions of granular media in a hopper using the discrete element method[J]. Powder Technology, 2015, 278: 286-305. doi: 10.1016/j.powtec.2015.02.046
    [16] 孔亮, 彭仁. 颗粒形状对类砂土力学性质影响的颗粒流模拟[J]. 岩石力学与工程学报, 2011, 30(10): 2112-2119. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110020.htm

    KONG Liang, PENG Ren. Particle flow simulation of influence of particle shape on mechanical properties of quasi-sands[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2112-2119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110020.htm
    [17] LU G, THIRD J R, MULLER C R. Discrete element models for non-spherical particle systems: from theoretical developments to applications[J]. Chemical Engineering Science, 2015, 127: 425-465. doi: 10.1016/j.ces.2014.11.050
    [18] LIN X, NG T. Contact detection algorithms for three-dimensional ellipsoids in discrete element modelling[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 1995, 19(9): 653-659.
    [19] YAN B, REGUEIRO R A, STURE S. Three-dimensional ellipsoidal discrete element modeling of granular materials and its coupling with finite element facets[J]. Engineering Computations, 2010, 27(4): 519-550. doi: 10.1108/02644401011044603
    [20] CLEARY P W. Industrial particle flow modelling using discrete element method[J]. Engineering Computations, 2009, 26(6): 698-743. doi: 10.1108/02644400910975487
    [21] 崔泽群, 陈友川, 赵永志, 等. 基于超二次曲面的非球形离散单元模型研究[J]. 计算力学学报, 2013, 30(6): 854-859. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201306017.htm

    CUI Zequn, CHEN Youchuan, ZHAO Yongzhi, et al. Study of discrete element model for non-sphere particles base on super-quadrics[J]. Chinese Journal of Computational Mechanics, 2013, 30(6): 854-859. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201306017.htm
    [22] 王嗣强, 季顺迎. 基于CUDA-GPU架构的超二次曲面离散单元并行算法[J]. 应用数学和力学, 2019, 40(7): 751-767. doi: 10.21656/1000-0887.390267

    WANG Siqiang, JI Shunying. A parallel algorithm for super-quadric discrete elements based on the CUDA-GPU architecture[J]. Applied Mathematics and Mechanics, 2019, 40(7): 751-767. (in Chinese) doi: 10.21656/1000-0887.390267
    [23] NASSAUER B, LIEDKE T, KUNA M. Polyhedral particles for the discrete element method[J]. Granular Matter, 2013, 15(1): 85-93. doi: 10.1007/s10035-012-0381-9
    [24] 洪俊, 李建兴, 沈月, 等. 多面体颗粒的接触识别及离散元动力学建模[J]. 东南大学学报(自然科学版), 2018, 48(6): 1082-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201806014.htm

    HONG Jun, LI Jianxing, SHEN Yue, et al. Contact detection and dynamic model for polyhedral particles based on discrete element method[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(6): 1082-1087. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201806014.htm
    [25] GALINDO-TORRES S A, ALONSO-MARROQUIN F, WANG Y C, et al. Molecular dynamics simulation of complex particles in three dimensions and the study of friction due to nonconvexity[J]. Physical Review E, 2009, 79: 060301.
    [26] 刘璐, 姜庆郁, 季顺迎. 基于扩展多面体单元的DEM-SPH耦合算法及应用[J]. 水动力学研究与进展, 2019, 34(4): 456-466. https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201904005.htm

    LIU Lu, JIANG Qingyu, JI Shunying. Dilated polyhedron-based on DEM-SPH coupling algorithm and applications[J]. Chinese Journal of Hydrodynamics, 2019, 34(4): 456-466. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201904005.htm
    [27] LIU L, JI S Y. Ice load on floating structure simulated with dilated polyhedral discrete element method in broken ice field[J]. Applied Ocean Research, 2018, 75: 53-65.
    [28] LI C B, PENG Y X, ZHANG P, et al. The contact detection for heart-shaped particles[J]. Powder Technology, 2019, 346: 85-96.
    [29] 王嗣强, 乔婷, 张林风, 等. 基于水平集接触算法的任意形态颗粒材料球谐离散元方法[J]. 中国科学: 物理学力学天文学, 2022, 52(2): 42-57. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202202004.htm

    WANG Siqiang, QIAO Ting, ZHANG Linfeng, et al. A discrete element method with spherical harmonics for irregular granular materials based on the level set contact algorithm[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2022, 52(2): 42-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202202004.htm
    [30] FENG Y T. An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: basic framework and general contact model[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113454.
    [31] FENG Y T. An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: contact volume based model and computational issues[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113493.
    [32] LIU Z H, ZHAO Y Z. Multi-super-ellipsoid model for non-spherical particles in DEM simulation[J]. Powder Technology, 2020, 361: 190-202.
    [33] RAKOTONIRINA A D, DELENNE J Y, RADJAI F, et al. Grains3D, a flexible DEM approach for particles of arbitrary convex shape, part Ⅲ: extension to non-convex particles modelled as glued convex particles[J]. Computational Particle Mechanics, 2019, 6: 55-84.
    [34] NAN X, HOU J M, SHEN Z H, et al. CFD-DEM coupling with multi-sphere particles and application in predicting dynamic behaviors of drifting boats[J]. Ocean Engineering, 2022, 247: 110368.
    [35] LU L Q, GAO X, SHAHNAM M, et al. Open source implementation of glued sphere discrete element method and non﹕pherical biomass fast pyrolysis simulation[J]. AIChE Journal, 2021, 67: 17211.
    [36] ZHANG B N, REGUEIRO R, DRUCKREY A, et al. Construction of poly-ellipsoidal grain shapes from SMT imaging on sand, and the development of a new DEM contact detection algorithm[J]. Engineering Computations, 2018, 35(2): 733-771.
    [37] WANG S Q, JI S Y. Flow characteristics of nonspherical granular materials simulated with multi-superquadric elements[J]. Particuology, 2021, 54(1): 25-36.
    [38] VARADHAN G, MANOCHA D. Accurate Minkowski sum approximation of polyhedral models[J]. Graphical Models, 2006, 68(4): 343-355.
    [39] GALINDO-TORRES S A, PEDROSO D M, WILLIAMS D J, et al. Breaking processes in three-dimensional bonded granular materials with general shapes[J]. Computer Physics Communications, 2012, 183(2): 266-277.
    [40] WACHS A, GIROLAMI L, VINAY G, et al. Grains3D, a flexible DEM approach for particles of arbitrary convex shape, part Ⅰ: numerical model and validations[J]. Powder Technology, 2012, 224: 374-389.
    [41] SEELEN L, PADDING J T, KUIPERS J. A granular discrete element method for arbitrary convex particle shapes: method and packing generation[J]. Chemical Engineering Science, 2018, 189: 84-101.
    [42] ZHANG Q, JIA C J, YU J, et al. Multisphere representation of convex polyhedral particles for DEM simulation[J]. Advances in Civil Engineering, 2021, 2021: 8846004.
    [43] 刘璐, 季顺迎. 基于扩展多面体包络函数的快速接触搜索算法[J]. 中国科学: 物理学力学天文学, 2019, 49(6): 13-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201906002.htm

    LIU Lu, JI Shunying. A fast detection algorithm based on the envelope function of dilated polyhedron[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2019, 49(6): 13-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201906002.htm
    [44] HOULSBY G T. Potential particles: a method for modelling non-circular particles in DEM[J]. Computers & Geotechnics, 2009, 36(6): 953-959.
    [45] LIU S D, ZHOU Z Y, ZOU R P, et al. Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper[J]. Powder Technology, 2014, 253: 70-79.
    [46] GOVENDER N, WILKE D N, WU C Y, et al. Hopper flow of irregularly shaped particles (non-convex polyhedra): GPU-based DEM simulation and experimental validation[J]. Chemical Engineering Science, 2018, 188: 34-51.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  488
  • HTML全文浏览量:  171
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-01
  • 修回日期:  2022-06-30
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回