留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有时滞的离散Lotka-Volterra合作系统波前解的非线性稳定性

闫瑞 刘桂荣 李晓翠

闫瑞, 刘桂荣, 李晓翠. 具有时滞的离散Lotka-Volterra合作系统波前解的非线性稳定性[J]. 应用数学和力学, 2023, 44(4): 461-470. doi: 10.21656/1000-0887.430172
引用本文: 闫瑞, 刘桂荣, 李晓翠. 具有时滞的离散Lotka-Volterra合作系统波前解的非线性稳定性[J]. 应用数学和力学, 2023, 44(4): 461-470. doi: 10.21656/1000-0887.430172
YAN Rui, LIU Guirong, LI Xiaocui. Nonlinear Stability of Traveling Wavefronts for a Discrete Cooperative Lotka-Volterra System With Delays[J]. Applied Mathematics and Mechanics, 2023, 44(4): 461-470. doi: 10.21656/1000-0887.430172
Citation: YAN Rui, LIU Guirong, LI Xiaocui. Nonlinear Stability of Traveling Wavefronts for a Discrete Cooperative Lotka-Volterra System With Delays[J]. Applied Mathematics and Mechanics, 2023, 44(4): 461-470. doi: 10.21656/1000-0887.430172

具有时滞的离散Lotka-Volterra合作系统波前解的非线性稳定性

doi: 10.21656/1000-0887.430172
基金项目: 

国家自然科学基金项目 11971279

国家自然科学基金项目 12101034

详细信息
    作者简介:

    闫瑞(1981—),女,副教授,硕士(E-mail: yanrui@sxufe.edu.cn)

    通讯作者:

    李晓翠(1982—),女,博士(通讯作者. E-mail: xiaocuili@mail.buct.edu.cn)

  • 中图分类号: O175.7

Nonlinear Stability of Traveling Wavefronts for a Discrete Cooperative Lotka-Volterra System With Delays

  • 摘要: 反应扩散模型的行波解的稳定性是一个很重要的研究课题.该文主要研究了一类具有时滞的离散Lotka-Volterra合作系统波前解的全局非线性稳定性.具体来讲, 当初值在无穷远处指数衰减到有较大波速的波前解而在其他位置可以任意大时, 运用L2-加权能量方法、比较原理和挤压技术可以得到该系统的此类波前解是指数渐近稳定的, 并解决了离散扩散算子及时滞共同作用下建立能量估计的问题.总之, 将加权能量方法推广到带有时滞的离散系统中, 丰富了相关的研究内容.
  • [1] 叶其孝, 李正元, 王明新, 等. 反应扩散方程引论[M]. 2版. 北京: 科学出版社, 2011.

    YE Qixiao, LI Zhengyuan, WANG Mingxin, et al. Introduction to Reaction-Diffusion Equations[M]. 2nd ed. Beijing: Science Press, 2011. (in Chinese))
    [2] HUANG J H, ZOU X F. Travelling wave fronts in diffusive and cooperative Lotka-Volterra system with delays[J]. Journal of Mathematical Analysis and Applications, 2002, 271: 455-466. doi: 10.1016/S0022-247X(02)00135-X
    [3] WU J H, ZOU X F. Traveling wave fronts of reaction diffusion systems with delay[J]. Journal of Dynamics and Differential Equations, 2001, 13: 651-687. doi: 10.1023/A:1016690424892
    [4] LV G Y, WANG M X. Traveling wave front in diffusive and competitive Lotka-Volterra system with delays[J]. Nonlinear Analysis: Real World Applications, 2010, 11(3): 1323-1329. doi: 10.1016/j.nonrwa.2009.02.020
    [5] GUO J S, WU C H. Traveling wave front for a two-component lattice dynamical system arising in competitionmodels[J]. Journal of Differential Equations, 2012, 252(8): 4357-4391. doi: 10.1016/j.jde.2012.01.009
    [6] LI K, HUANG J H, LI X, et al. Traveling wave fronts in a delayed lattice competitive system[J]. Applicable Analysis, 2017, 97(6): 982-999.
    [7] 张秋, 陈广生. 一类具有非线性发生率与时滞的非局部扩散SIR模型的临界波的存在性[J]. 应用数学和力学, 2019, 40(7): 713-727. doi: 10.21656/1000-0887.390208

    ZHANG Qiu, CHEN Guangsheng. Existence of critical traveling waves for nonlocal dispersal SIR models with delay and nonlinear incidence[J]. Applied Mathematics and Mechanics, 2019, 40(7): 713-727. (in Chinese)) doi: 10.21656/1000-0887.390208
    [8] 谷雨萌, 黄明迪. 一类时间周期的时滞竞争系统行波解的存在性[J]. 应用数学和力学, 2020, 41(6): 658-668. doi: 10.21656/1000-0887.400275

    GU Yumeng, HUANG Mingdi. Existence of periodic traveling waves for time-periodic Lotka-Volterra competition systems with delay[J]. Applied Mathematics and Mechanics, 2020, 41(6): 658-668. (in Chinese)) doi: 10.21656/1000-0887.400275
    [9] BRAMSON M. Convergence of Solutions of the Kolmogorov Equation to Traveling Waves[M]. Memoirs of the American Mathematical Society, 1983.
    [10] KIRCHGÄSSNER K. On the nonlinear dynamics of travelling fronts[J]. Journal of Differential Equations, 1992, 96(2): 256-278. doi: 10.1016/0022-0396(92)90153-E
    [11] TSAI J C, SNEYD J. Existence and stability of traveling waves in bufferedsystems[J]. SIAM Journal on Mathematical Analysis, 2005, 66: 237-265.
    [12] MA S W, ZHAO X Q. Global asymptotic stability of minimal fronts in monostable lattice equations[J]. Discrete and Continuous Dynamical Systems, 2008, 21: 259-275. doi: 10.3934/dcds.2008.21.259
    [13] WANG Y, CAO X Y, MA Z H, et al. Global stability of noncritical traveling front solutions of Fisher-type equations with degenerate nonlinearity[J]. Journal of Mathematical Physics, 2021, 62(5): 051506. doi: 10.1063/5.0043893
    [14] ZHOU Y H, YAN Z M, JI S G. Global stability of traveling waves with non-monotonicity for population dynamicsmodel[J]. Tokyo Journal of Mathematics, 2021, 44: 383-396.
    [15] LIU C C, MEI M, YANG J Q. Global stability of traveling waves for nonlocal time-delayed degenerate diffusion equation[J]. Journal of Differential Equations, 2022, 306: 60-100. doi: 10.1016/j.jde.2021.10.027
    [16] SCHAAF K W. Asymptotic behavior and traveling wave solutions for parabolic functional differentialequations[J]. Transactions of the American Mathematical Society, 1987, 302: 587-615.
    [17] MEI M, SO J W H, LI M Y, et al. Asymptotic stability of traveling waves for the Nicholson's blowflies equation with diffusion[J]. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2004, 134(3): 579-594. doi: 10.1017/S0308210500003358
    [18] LIN C K, MEI M. On travellingwavefronts of the Nicholson's blowflies equations with diffusion[J]. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2010, 140(1): 135-152. doi: 10.1017/S0308210508000784
    [19] MEI M, LIN C K, LIN C T, et al. Traveling wavefronts for time-delayed reaction-diffusion equation, Ⅰ: local nonlinearity[J]. Journal of Differential Equations, 2009, 247(2): 495-510. doi: 10.1016/j.jde.2008.12.026
    [20] MEI M, LIN C K, LIN C T, et al. Traveling wavefronts for time-delayed reaction-diffusion equation, Ⅱ: nonlocal nonlinearity[J]. Journal of Differential Equations, 2009, 247(2): 511-529. doi: 10.1016/j.jde.2008.12.020
    [21] YU Z X, XU F, ZHANG W G. Stability of invasion traveling waves for a competition system with nonlocaldispersals[J]. Applicable Analysis, 2017, 96(7): 1107-1125. doi: 10.1080/00036811.2016.1178242
    [22] ZHANG G B, DONG F D, LI W T. Uniqueness and stability of traveling waves for a three-species competition system with nonlocaldispersal[J]. Discrete and Continuous Dynamical Systems(Series B), 2019, 24(4): 1511-1541. doi: 10.3934/dcdsb.2018218
    [23] MA S, ZOU X F. Existence, uniqueness and stability of traveling waves in a discrete reaction-diffusionmonostable equation with delay[J]. Journal of Differential Equations, 2005, 217(1): 54-87. doi: 10.1016/j.jde.2005.05.004
    [24] GUO S J, ZIMMER J. Stability of travelingwavefronts in discrete reaction-diffusion equations with nonlocal delay effects[J]. Nonlinearity, 2015, 28(2): 463-492. doi: 10.1088/0951-7715/28/2/463
    [25] HSU C H, LIN J J, YANG T S. Stability for monostable wave fronts of delayed lattice differential equations[J]. Journal of Dynamics and Differential Equations, 2017, 29: 323-342. doi: 10.1007/s10884-015-9447-9
    [26] YU Z X, HSU C H. Wave propagation and its stability for a class of discrete diffusion systems[J]. Zeitschrift für Angewandte Mathematik und Physik, 2020, 71: 194. doi: 10.1007/s00033-020-01423-4
    [27] CHEN G S, WU S L, HSU C H. Stability of travelingwavefronts for a discrete diffusive competition system with three species[J]. Journal of Mathematical Analysis and Applications, 2019, 474(2): 909-930. doi: 10.1016/j.jmaa.2019.01.079
    [28] SU T, ZHANG G B. Stability of travelingwavefronts for a three-component Lotka-Volterra competition system on a lattice[J]. Electronic Journal of Differential Equations, 2018, 57(2018): 1-16.
    [29] HSU C H, LIN J J. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations[J]. Discrete and Continuous Dynamical Systems(Series B), 2020, 25(5): 1757-1774. doi: 10.3934/dcdsb.2020001
    [30] 朱福国. 格上时滞Lotka-Volterra合作系统的波前解[J]. 生物数学学报, 2012, 27(1): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-SWSX201201018.htm

    ZHU Fuguo. Traveling wavefrons of delayed Lotka-Volterra system on lattice[J]. Journal of Biomathematics, 2012, 27(1): 150-156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWSX201201018.htm
  • 加载中
计量
  • 文章访问数:  433
  • HTML全文浏览量:  150
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-23
  • 修回日期:  2022-06-28
  • 刊出日期:  2023-04-01

目录

    /

    返回文章
    返回