留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于嵌套网格的环空流体内旋转杆柱与井筒碰撞特性研究

岳欠杯 王笑笑 曹文 刘跃秋 李辉 徐燕璐

岳欠杯, 王笑笑, 曹文, 刘跃秋, 李辉, 徐燕璐. 基于嵌套网格的环空流体内旋转杆柱与井筒碰撞特性研究[J]. 应用数学和力学, 2023, 44(5): 543-559. doi: 10.21656/1000-0887.430183
引用本文: 岳欠杯, 王笑笑, 曹文, 刘跃秋, 李辉, 徐燕璐. 基于嵌套网格的环空流体内旋转杆柱与井筒碰撞特性研究[J]. 应用数学和力学, 2023, 44(5): 543-559. doi: 10.21656/1000-0887.430183
YUE Qianbei, WANG Xiaoxiao, CAO Wen, LIU Yueqiu, LI Hui, XU Yanlu. Study on Collision Characteristics of Rotating Rod Strings in Annulus Fluid With Wellbores Based on Nested Grids[J]. Applied Mathematics and Mechanics, 2023, 44(5): 543-559. doi: 10.21656/1000-0887.430183
Citation: YUE Qianbei, WANG Xiaoxiao, CAO Wen, LIU Yueqiu, LI Hui, XU Yanlu. Study on Collision Characteristics of Rotating Rod Strings in Annulus Fluid With Wellbores Based on Nested Grids[J]. Applied Mathematics and Mechanics, 2023, 44(5): 543-559. doi: 10.21656/1000-0887.430183

基于嵌套网格的环空流体内旋转杆柱与井筒碰撞特性研究

doi: 10.21656/1000-0887.430183
基金项目: 

国家自然科学基金青年科学基金项目 51904075

国家自然科学基金青年科学基金项目 11972114

黑龙江省自然科学基金(联合引导项目) LH2022E018

详细信息
    通讯作者:

    岳欠杯(1983—),女,副教授,博士生导师(通讯作者. E-mail: zlgbb529@126.com)

  • 中图分类号: TG335.58;O39

Study on Collision Characteristics of Rotating Rod Strings in Annulus Fluid With Wellbores Based on Nested Grids

  • 摘要: 针对浸没在流体中杆管柱间相互接触问题,基于嵌套网格技术,该文建立了环空流体内旋转杆柱与井筒间碰撞的数值求解方法. 将环空流体域分为相互嵌套的子区域:背景网格和组件网格,推导了各嵌套区域流场边界传递信息的插值计算公式,采用分域方法对环空流体域与杆柱固体域耦合进行求解. 通过静止流体中球形颗粒与壁面正、斜碰撞实验对比,验证该文数值方法的正确性. 研究了不同流体黏度、杆柱旋转速度条件下杆柱与井筒的碰撞特性,结果表明:1)杆柱与井筒碰撞的碰撞力、速度随黏度增大而降低,即杆柱与井筒碰撞的剧烈程度与流体黏度负相关;2)随着杆柱旋转速度增大,杆柱与井筒的碰撞力、速度也增大,即杆柱与井筒碰撞的剧烈程度与转速正相关.
  • 图  1  力学模型

    Figure  1.  The mechanical model

    图  2  有限元模型

     为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  The finite element model

    图  3  挖洞和重叠最小化后的嵌套网格

     为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  The nested mesh with a hole and minimal overlap

    图  4  嵌套边界处网格尺寸相近

    Figure  4.  The similar mesh sizes at nested boundaries

    图  5  供体单元尺寸大于受体单元尺寸

    Figure  5.  The donor element size larger than the acceptor element size

    图  6  供体单元尺寸小于受体单元尺寸

    Figure  6.  The donor element size smaller than the acceptor element size

    图  7  环空流体域嵌套网格计算

    Figure  7.  The flowchart for the calculation of the annular fluid domain nested grid

    图  8  分域求解流程

    Figure  8.  The domain solution flow chart

    图  9  流体中球形颗粒自由沉降有限元模型

    Figure  9.  The finite element model of free settlement of spherical particles in fluid

    图  10  垂向速度vp为-0.7 m·s-1时的速度云图

    Figure  10.  Velocity contours for vertical velocity vp=-0.7 m·s-1

    图  11  颗粒垂向速度vp随时间的变化

    Figure  11.  Variations of vertical particle velocity vp with time

    图  12  流体中球形颗粒与壁面碰撞有限元模型

    Figure  12.  The finite element model of collision between spherical particles and wall in fluid

    图  13  恢复系数e与Stokes数S的关系曲线

    Figure  13.  Relation curves between recovery coefficient e and Stokes number S

    图  14  球形颗粒碰撞过程中高度、速度随时间的变化曲线

    Figure  14.  Variation curves of the displacement and the velocity with time during spherical particle collision

    图  15  颗粒与壁面正碰撞涡量场随时间的变化

    Figure  15.  Contours diagram of vorticity fields changing with time during frontal collision between particles and wall

    图  16  流体中球形颗粒与壁面斜碰撞有限元模型

    Figure  16.  The finite element model of oblique collision between spherical particles and wall surface in fluid

    图  17  无量纲化入射角和反射角关系曲线

    Figure  17.  Relation curves of the dimensionless incident angle and the rebound angle

    图  18  颗粒与壁面斜碰撞涡量场随时间的变化

    Figure  18.  Contours of vorticity fields changing with time during oblique collision between particles and wall

    图  19  网格模型

    Figure  19.  Grid model

    图  20  旋转杆柱与井筒碰撞力随时间的变化

    Figure  20.  Variations of impact forces between the rotating rod string and the wellbore with time

    图  21  环空流体随杆柱运动的涡量

    Figure  21.  Vorticity contours of annulus fluid moving with the rod string

    图  22  不同流体黏度下,旋转杆柱与井筒碰撞力随时间的变化

    Figure  22.  Variations of the impact force between the rotating rod string and the wellbore with time under different fluid viscosities

    图  23  不同流体黏度下杆柱上与井筒第1次碰撞点的运动轨迹

    Figure  23.  Trajectories of the 1st collision point between the rod string and the wellbore under different fluid viscosities

    图  24  不同流体黏度下杆柱中心点速度随时间的变化

    Figure  24.  Variations of the center point velocity of the rod string with time under different fluid viscosities

    图  25  不同转速下杆柱与井筒间碰撞力随时间的变化

    Figure  25.  Variations of collision force between rod string and wellbore with time at different rotational speeds

    图  26  不同转速下杆柱上与井筒第1次碰撞点的运动轨迹

    Figure  26.  Motion trajectories of the 1st collision point between the rod string and the wellbore at different rotational speeds

    图  27  不同转速下中心点速度随时间的变化

    Figure  27.  Center point velocities changing with time at different rotational speeds

    表  1  球形颗粒物理参数

    Table  1.   Physical parameters of spherical particles

    case sphere diameter D/mm granular material granule density ρs/(kg·m-3)
    7 3 steel 7 800
    下载: 导出CSV

    表  2  球形颗粒与流体的物理参数

    Table  2.   Physical parameters of spherical particles and fluid

    case sphere diameter D/mm fluid density ρf/(kg·m-3) fluid viscosity μf/(N·s/m2) Stokes number S
    3 965 0.1 5
    6 965 0.1 26
    3 953 0.02 60
    4 953 0.02 104
    3 935 0.01 149
    3 920 0.005 369
    5 920 0.005 760
    5 998 0.001 3 480
    下载: 导出CSV

    表  3  球形颗粒与流体的物理参数

    Table  3.   Physical parameters of spherical particles and fluid

    sphere diameter D/mm recovery coefficient edry coefficient of sliding friction μdry sphere density ρs/(kg·m-3) fluid density ρf/(kg·m-3) fluid viscosity μf/(N·s/m2)
    12.7 0.97 0.11 7 800 998 0.001
    下载: 导出CSV

    表  4  旋转杆柱和流体的物理参数

    Table  4.   Physical parameters of rotating rod and fluid

    elasticity modulus E/Pa Poisson’s ratio υ density of the rod string ρs/(kg·m-3) fluid density ρf/(kg·m-3) fluid viscosity μf/(N·s/m2) rotating speed of the rod string V/(rad·s-1)
    2.4×1011 0.3 7 800 998 0.005 25.12
    下载: 导出CSV

    表  5  网格无关性验证

    Table  5.   Grid independence verification

    solid domain fluid domain
    number of grid 1 122 2 109 3 234 47 375 68 900 105 396 137 991
    first impact force/N 1.37 2.31 2.4 0.825 0.716 0.554 0.561
    下载: 导出CSV
  • [1] FABIAN D, RAUL G, SRINIVASAN N. Arbitrary Lagrangian-Eulerian method for Navier-Stokes equations with moving boundaries[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(45/47) : 4819-4836. http://www.captura.uchile.cl/bitstream/handle/2250/1874/Duarte,%20F.pdf?sequence=1
    [2] 王奇, 朱寅鑫, 牛培行, 等. 柔性扑翼翼型的气动性能仿真分析[J]. 应用数学和力学, 2022, 43(5): 586-596. doi: 10.21656/1000-0887.430155

    WANG Qi, ZHU Yinxin, NIU Peixing, et al. Simulation of aerodynamic performances of flexible flapping wing airfoils[J]. Applied Mathematics and Mechanics, 2022, 43(5): 586-596. (in Chinese) doi: 10.21656/1000-0887.430155
    [3] TOGASHI F, ITO Y, NAKAHASHI K. Extensions of overset unstructured grids to multiple bodies in contact[J]. Journal of Aircraft, 2006, 43(1): 52-57. doi: 10.2514/1.540
    [4] MILLER S T, CAMPBELL R L, ELSWORTH C W, et al. An overset grid method for fluid-structure interaction[J]. World Journal of Mechanics, 2014, 4(7): 217-237. doi: 10.4236/wjm.2014.47023
    [5] 李映坤. 多物理场耦合计算方法研究及其在双脉冲发动机中的应用[D]. 博士学位论文. 南京: 南京理工大学, 2017.

    LI Yingkun. A study of numerical method for multi-physics field coupling and application to dual pulse motor[D]. PhD Thesis. Nanjing: Nanjing University of Science and Technology, 2017. (in Chinese)
    [6] 倪同兵. 旋翼(尾桨)气动噪声的主/被动抑制方法及机理研究[D]. 博士学位论文. 南京: 南京航空航天大学, 2018.

    NI Tongbing. Active/passive noise suppression method and mechanism researches on aeroacoustic of rotor(tail-rotor)[D]. PhD Thesis. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
    [7] 徐广. 新型桨尖弹性旋翼气动特性的Navier-Stokes方程数值模拟[D]. 博士学位论文. 南京: 南京航空航天大学, 2010.

    XU Guang. Numerical simulation on aerodynamic characteristics of elastic rotors with new tip shape by N-S equations[D]. PhD Thesis. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese)
    [8] 史美娇, 徐慧东, 张建文. 双侧弹性约束悬臂梁的非光滑擦边动力学[J]. 应用数学和力学, 2022, 43(6): 619-630. doi: 10.21656/1000-0887.420177

    SHI Meijiao, XU Huidong, ZHANG Jianwen. Non-smooth grazing dynamics for cantilever beams with bilateral elastic constraints[J]. Applied Mathematics and Mechanics, 2022, 43(6): 619-630. (in Chinese) doi: 10.21656/1000-0887.420177
    [9] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598. doi: 10.2514/3.12149
    [10] 刘云贺. 流体-固体动力耦合理论及水利工程应用[D]. 博士学位论文. 西安: 西安交通大学, 2001.

    LIU Yunhe. Fluid-solid dynamic coupling theory and its application in hydraulic engineering[D]. PhD Thesis. Xi'an: Xi'an Jiaotong University, 2001. (in Chinese)
    [11] 黄宇, 阎超, 王文, 等. 混合重叠网格插值方法的改进及应用[J]. 北京航空航天大学学报, 2017, 43(2): 285-292. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201702010.htm

    HUANG Yu, YAN Chao, WANG Wen, et al. An improved interpolation method for hybrid overset grid and its application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 285-292. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201702010.htm
    [12] VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady state solutions: 93-0880[R]. AIAA Paper, 1993.
    [13] BAKER T J. Interpolation from a cloud of points[C]//Proceedings of the 12th International Meshing Roundtable. Santa Fe, 2003: 55-63.
    [14] 杨明, 刘巨保, 岳欠杯, 等. 基于浸入边界-有限元法的流固耦合碰撞数值模拟方法[J]. 应用数学和力学, 2019, 40(8): 880-892. doi: 10.21656/1000-0887.400053

    YANG Ming, LIU Jubao, YUE Qianbei, et al. Numerical simulation of fluid-solid coupling collision based on the finite element immersed boundary method[J]. Applied Mathematics and Mechanics, 2019, 40(8): 880-892. (in Chinese) doi: 10.21656/1000-0887.400053
    [15] 杨明. 固体间碰撞与流体耦合的数值分析方法研究[D]. 博士学位论文. 大庆: 东北石油大学, 2019.

    YANG Ming. Study on numerical analysis method of solid to solid collision coupling with fluid[D]. PhD Thesis. Daqing: Northeast Petroleum University, 2019. (in Chinese)
    [16] 邓创华. 流固耦合弱耦合算法研究[D]. 硕士学位论文. 武汉: 华中科技大学, 2012.

    DENG Chuanghua. A thesis submitted in partial fulfillment of the requirements for the degree of master of applied sociology[D]. Master Thesis. Wuhan: Huazhong University of Science and Technology, 2012. (in Chinese)
    [17] GONDRET P, LANCE M, PETIT L. Bouncing motion of spherical particles in fluids[J]. Physics of Fluids, 2002, 14(2): 643. doi: 10.1063/1.1427920
    [18] JOSEPH G G, HUNT M L. Oblique particle-wall collisions in a liquid[J]. Journal of Fluid Mechanics, 2004, 510: 71-93.
  • 加载中
图(27) / 表(5)
计量
  • 文章访问数:  490
  • HTML全文浏览量:  181
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-31
  • 修回日期:  2022-09-12
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回