留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能梯度压电板柱面弯曲的弹性力学解

沈璐璐 蔡方圆 杨博

沈璐璐,蔡方圆,杨博. 功能梯度压电板柱面弯曲的弹性力学解 [J]. 应用数学和力学,2023,44(3):272-281 doi: 10.21656/1000-0887.430224
引用本文: 沈璐璐,蔡方圆,杨博. 功能梯度压电板柱面弯曲的弹性力学解 [J]. 应用数学和力学,2023,44(3):272-281 doi: 10.21656/1000-0887.430224
SHEN Lulu, CAI Fangyuan, YANG Bo. Elasticity Solutions for Cylindrical Bending of Functionally Graded Piezoelectric Material Plates[J]. Applied Mathematics and Mechanics, 2023, 44(3): 272-281. doi: 10.21656/1000-0887.430224
Citation: SHEN Lulu, CAI Fangyuan, YANG Bo. Elasticity Solutions for Cylindrical Bending of Functionally Graded Piezoelectric Material Plates[J]. Applied Mathematics and Mechanics, 2023, 44(3): 272-281. doi: 10.21656/1000-0887.430224

功能梯度压电板柱面弯曲的弹性力学解

doi: 10.21656/1000-0887.430224
基金项目: 国家自然科学基金(11872336);机械结构强度与振动国家重点实验室开放课题(SV2020-KF-13)
详细信息
    作者简介:

    沈璐璐(1990—),女,副教授,博士 (E-mail:lulushen@zstu.edu.cn

    蔡方圆(1998—),女,硕士生 (E-mail:13588750105@163.com

    杨博(1979—),男,教授,博士(通讯作者. E-mail:youngbo@zstu.edu.cn

  • 中图分类号: O343.1

Elasticity Solutions for Cylindrical Bending of Functionally Graded Piezoelectric Material Plates

  • 摘要:

    功能梯度压电材料(FGPM)同时兼具功能梯度材料和压电材料特性,可为多功能或智能化轻质结构设计提供支撑,在诸多领域有着广泛的应用前景。将Mian和Spencer功能梯度板理论由功能梯度弹性材料推广到功能梯度压电材料,解析研究了FGPM板的柱面弯曲问题,其中,材料弹性常数、压电和介电参数沿板厚方向可以任意连续变化。最终,给出了FGPM板受横向均布荷载作用下柱面弯曲问题的弹性力学解。通过算例分析,重点讨论了压电效应对FGPM板静力响应的影响。

  • 图  1  均布荷载作用下 FGPM 板示意图

    Figure  1.  Schematic diagram of the FGPM plate under uniform load

    图  2  无量纲位移$\bar U $对比图

    Figure  2.  Comparison of dimensionless displacement $\bar U $

    图  3  无量纲挠度$ \bar W $对比图

    Figure  3.  Comparison of dimensionless deflection $ \bar W $

    图  4  无量纲应力对比图

    Figure  4.  Comparison of dimensionless stress

    图  5  7种边界条件下的无量纲挠度分布图

    Figure  5.  Comparison of dimensionless displacement under 7 boundary conditions

    表  1  $ z = 0 $处的无量纲位移$ \bar W $对比

    Table  1.   Comparison of dimensionless displacement $\bar W $ at $ z = 0 $

    x00.10.20.30.40.50.60.70.80.91.0
    this paper061.162115.183157.221183.821192.924183.819157.223115.18461.1590
    FEM061.164114.669156.379182.810191.863182.822156.384114.67061.1640
    errors δ/%0.0030.4460.5360.5500.5500.5420.5340.4460.008
    下载: 导出CSV

    表  2  n=0,z=0处的无量纲位移w/h对比

    Table  2.   Comparison of dimensionless displacement at n=0,z=0

    x00.10.20.30.40.50.60.70.80.91.0
    ref. [22]w/h00.1950.3770.5200.6120.6520.6010.5120.3850.2050
    this paperw/h00.2080.3920.5330.6270.6580.6280.5370.3910.2060
    下载: 导出CSV

    表  3  n=10,z=0处的无量纲位移w/h对比

    Table  3.   Comparison of dimensionless displacement at n=10,z=0

    x00.10.20.30.40.50.60.70.80.91.0
    ref. [22] w/h00.5821.0861.4881.7471.8261.7501.4801.0940.6050
    this paperw/h00.6331.1921.6181.9051.9971.9071.6321.1870.6270
    下载: 导出CSV
  • [1] 刘涛, 汪超, 刘庆运. 基于等几何方法的压电功能梯度板动力学及主动振动控制分析[J]. 工程力学, 2020, 37(12): 228-242 doi: 10.6052/j.issn.1000-4750.2020.04.0266

    LIU Tao, WANG Chao, LIU Qingyun. Analysis for dynamics and active vibration control of piezoelectric functionally graded plates based on isogeometric method[J]. Engineering Mechanics, 2020, 37(12): 228-242.(in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0266
    [2] 韩杰才, 徐丽, 王保林, 等. 梯度功能材料的研究进展及展望[J]. 固体火箭技术, 2004, 27(3): 207-215 doi: 10.3969/j.issn.1006-2793.2004.03.012

    HAN Jiecai, XU Li, WANG Baolin, et al. Progress and prospects of functional gradient materials[J]. Journal of Solid Rocket Technology, 2004, 27(3): 207-215.(in Chinese) doi: 10.3969/j.issn.1006-2793.2004.03.012
    [3] CARL C M, WU M K, MOY K. Piezoelectric ceramics with functional gradients: a new application in material design[J]. Journal of the American Ceramic Society, 1996, 79(3): 809-812.
    [4] 杨博, 丁皓江, 陈伟球. 功能梯度板柱面弯曲的弹性力学解[J]. 应用数学和力学, 2008, 29(8): 905-910 doi: 10.3879/j.issn.1000-0887.2008.08.003

    YANG Bo, DING Haojiang, CHEN Weiqiu. Elasticity solutions for functionally graded plates in cylindrial bending[J]. Applied Mathematics and Mechanics, 2008, 29(8): 905-910.(in Chinese) doi: 10.3879/j.issn.1000-0887.2008.08.003
    [5] 边祖光. 功能梯度材料板壳结构的耦合问题研究[D]. 博士学位论文. 杭州: 浙江大学, 2005.

    BIAN Zuguang. On coupled problems of functionally graded materials plates and shells[D]. PhD Thesis. Hangzhou: Zhejiang University, 2005. (in Chinese)
    [6] ALMAJID A, TAYA M, HUDNUT S W, et al. Analysis of out-of-plane displacement and stress field in a piezocomposite plate with functionally graded microstructure[J]. International Journal of Solids and Structures, 2001, 38(19): 3377-3391. doi: 10.1016/S0020-7683(00)00264-X
    [7] ZHONG Z, SHANG E T. Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate[J]. International Journal of Solids and Structures, 2003, 40(20): 5335-5352. doi: 10.1016/S0020-7683(03)00288-9
    [8] NAVAZI H M, HADDADPOUR H. Nonlinear cylindrical bending analysis of shear deformable functionally graded plates under different loadings using analytical methods[J]. International Journal of Mechanical Sciences, 2008, 50(12): 1650-1657. doi: 10.1016/j.ijmecsci.2008.08.010
    [9] TAHANI M, MIRZABABAEE S M. Non-linear analysis of functionally graded plates in cylindrical bending under thermomechanical loadings based on a layerwise theory[J]. European Journal of Mechanics A: Solids, 2008, 28(2): 248-256.
    [10] WANG Y, XU R Q, DING H J. Analytical solutions of functionally graded piezoelectric circular plates subjected to axisymmetric loads[J]. Acta Mechanica, 2010, 215(1/4): 287-305.
    [11] ZHONG Z, CHEN S, SHANG E. Analytical solution of a functionally graded plate in cylindrical bending[J]. Mechanics of Advanced Materials and Structures, 2010, 17(8): 595-602. doi: 10.1080/15376494.2010.517729
    [12] 刘五祥, 仲政. 任意梯度分布功能梯度板的柱形弯曲分析[J]. 武汉理工大学学报, 2008, 30(4): 106-109

    LIU Wuxiang, ZHONG Zheng. Analysis for functionally gradient plate of arbitrary gradient distribution in cylindrical bending[J]. Journal of Wuhan University of Technology, 2008, 30(4): 106-109.(in Chinese)
    [13] LI X Y, WU J, DING H J. 3D analytical solution for a functionally graded transversely isotropic piezoelectric circular plate under tension and bending[J]. International Journal of Engineering Science, 2011, 49(7): 664-676. doi: 10.1016/j.ijengsci.2011.03.001
    [14] LI Y S, PAN E. Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory[J]. International Journal of Engineering Science, 2015, 97: 40-59. doi: 10.1016/j.ijengsci.2015.08.009
    [15] ZENKOUR A M, HAFED Z S. Bending analysis of functionally graded piezoelectric plates via quasi-3D trigonometric theory[J]. Mechanics of Advanced Materials and Structures, 2020, 27(18): 1551-1562. doi: 10.1080/15376494.2018.1516325
    [16] DEHSARAJI M L, SAIDI A R, MOHAMMADI M. Bending analysis of thick functionally graded piezoelectric rectangular plates using higher-order shear and normal deformable plate theory[J]. Structural Engineering and Mechanics, 2020, 73(3): 259-269.
    [17] 王平远, 李成, 姚林泉. 基于非局部应变梯度理论功能梯度纳米板的弯曲和屈曲研究[J]. 应用数学和力学, 2021, 42(1): 15-26

    WANG Pingyuan, LI Cheng, YAO Linquan. Bending and buckling of functionally graded nanoplates based on the nonlocal strain gradient theory[J]. Applied Mathematics and Mechanics, 2021, 42(1): 15-26.(in Chinese)
    [18] 刘旭, 姚林泉. 热环境中旋转功能梯度纳米环板的振动分析[J]. 应用数学和力学, 2020, 41(11): 1224-1236

    LIU Xu, YAO Linquan. Vibration analysis of rotating functionally gradient nanocycle plates in thermal environment[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1224-1236.(in Chinese)
    [19] MIAN M A, SPENCER A J M. Exact solutions for functionally graded and laminated elastic materials[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(12): 2283-2295. doi: 10.1016/S0022-5096(98)00048-9
    [20] 孙烨丽, 沈璐璐, 杨博. 功能梯度板中Griffith裂纹尖端应力场的三维解析研究[J]. 应用数学和力学, 2021, 42(1): 36-48

    SUN Yeli, SHEN Lulu, YANG Bo. 3D analytical study of stress field at Griffith crack tip in functionally graded plates[J]. Applied Mathematics and Mechanics, 2021, 42(1): 36-48.(in Chinese)
    [21] 仲政, 尚尔涛. 功能梯度热释电材料矩形板的三维精确分析[J]. 力学学报, 2003, 35(5): 542-552 doi: 10.3321/j.issn:0459-1879.2003.05.005

    ZHONG Zheng, SHANG Ertao. Three dimensional exact analysis of functionally gradient piezothermoelectric material rectangular plate[J]. Acta Mechanica, 2003, 35(5): 542-552.(in Chinese) doi: 10.3321/j.issn:0459-1879.2003.05.005
    [22] NAVAZI H M, HADDADPOUR H, RASEKH M. An analytical solution for nonlinear cylindrical bending of functionally graded plates[J]. Thin-Walled Structures, 2006, 44(11): 1129-1137. doi: 10.1016/j.tws.2006.10.013
    [23] 柳彬彬. 功能梯度压电材料矩形板热-电-机械耦合三维分析[D]. 硕士学位论文. 合肥: 合肥工业大学, 2007.

    LIU Binbin. Three dimensional analysis of thero-meehanical-electric behaviour of functionally gradient piezoelectric material rectangular plate[D]. Maste Thesis. Hefei: Hefei University of Technology, 2007. (in Chinese)
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  678
  • HTML全文浏览量:  324
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-06
  • 录用日期:  2022-09-29
  • 修回日期:  2022-09-29
  • 网络出版日期:  2022-10-21
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回