留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缩放管中黏弹性流体电渗压力混合流模拟研究

杜昌隆 夏威豪 杨嘉杰 李捷

杜昌隆, 夏威豪, 杨嘉杰, 李捷. 缩放管中黏弹性流体电渗压力混合流模拟研究[J]. 应用数学和力学, 2023, 44(6): 643-653. doi: 10.21656/1000-0887.430255
引用本文: 杜昌隆, 夏威豪, 杨嘉杰, 李捷. 缩放管中黏弹性流体电渗压力混合流模拟研究[J]. 应用数学和力学, 2023, 44(6): 643-653. doi: 10.21656/1000-0887.430255
DU Changlong, XIA Weihao, YANG Jiajie, LI Jie. Simulation of Electroosmotic and Pressure-Driven Mixed Flow of Viscoelastic Fluids in Converging-Diverging Tubes[J]. Applied Mathematics and Mechanics, 2023, 44(6): 643-653. doi: 10.21656/1000-0887.430255
Citation: DU Changlong, XIA Weihao, YANG Jiajie, LI Jie. Simulation of Electroosmotic and Pressure-Driven Mixed Flow of Viscoelastic Fluids in Converging-Diverging Tubes[J]. Applied Mathematics and Mechanics, 2023, 44(6): 643-653. doi: 10.21656/1000-0887.430255

缩放管中黏弹性流体电渗压力混合流模拟研究

doi: 10.21656/1000-0887.430255
详细信息
    作者简介:

    杜昌隆(1996—),男,硕士生(E-mail: ducl1025@qq.com)

    通讯作者:

    李捷(1982—),男,副教授,博士生导师(通讯作者. E-mail: jieli@whut.edu.cn)

  • 中图分类号: O357.3

Simulation of Electroosmotic and Pressure-Driven Mixed Flow of Viscoelastic Fluids in Converging-Diverging Tubes

  • 摘要: 电渗压力混合流已广泛应用于各种生化微流控领域中,其中黏弹性流体的弹性不稳定性不可忽视.采用黏弹性流体,对10∶1∶10的微通道缩放管中电渗压力混合驱动流动进行数值仿真.研究了不同压力和不同聚合物浓度对流体流动的影响,并分析了Newton流体与黏弹性流体在缩放管中速度分布的叠加原理.结果表明:反向压力使黏弹性流体展现出更大的不稳定性,使得入口涡流变大,压力每增大1 Pa涡流变大25 μm,而正向压力使涡流变小.较小反向压力时,入口涡流随着聚合物浓度的增大而增大,并逐渐趋于稳定.在较大反向压力下,涡流大小随着聚合物浓度的增大先升后降.
  • 图  1  几何结构示意图

    Figure  1.  The structure diagram of the microchannel

    图  2  Γ=2速度分布验证

    Figure  2.  For Γ=2, the velocity distribution verification

    图  3  p=0 Pa, Cp=300 ppm, E=20 V,不同时刻的流线

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  For p=0 Pa, Cp=300 ppm, E=20 V, the streamlines at different moments

    图  4  pout=3 Pa, Cp=300 ppm, E=20 V,不同时刻的流线

    Figure  4.  For pout=3 Pa, Cp=300 ppm, E=20 V, the streamlines at different moments

    图  5  3个不同位置的速度随时间的变化

    Figure  5.  The change of the velocity with time at 3 different locations

    图  6  x=0,沿y轴的速度分布

    Figure  6.  The velocity distributions along the y axis

    图  7  Cp=300 ppm,入口处电势E=20 V,t=0.8 s时刻下的流线,pout=0 Pa,采用不同的进口压力

    Figure  7.  For Cp=300 ppm, entrance potential E=20 V, the streamlines at t=0.8 s, pout=0 Pa, with different inlet pressures

    图  8  涡流大小示意图

    Figure  8.  Schematic diagram of the vortex size

    图  9  E=20 V, Cp=300 ppm: 涡流大小随时间大小波动和不同出口压力下涡流的平均大小

    Figure  9.  For E=20 V, Cp=300 ppm: the vortex current size changing with time and the vortex current sizes under different outlet pressures

    图  10  E=20 V,涡流大小随聚合物浓度的变化

    Figure  10.  For E=20 V, the change of the vortex size with the polymer concentration

    图  11  通道中点速度的离散系数

    Figure  11.  The dispersion coefficient of the midpoint velocity of the channel

    图  12  pout=5 Pa,沿y轴的速度分布

    Figure  12.  The velocity distributions along the y- axis, pout=5 Pa

    表  1  模型部分参数

    Table  1.   Numerical simulation parameters

    parameter name value
    ρ/(kg/m3) 1 000
    ηs/(Pa·s) 0.001
    E0/(V/m) 20 000
    ζ/mV -110
    C0/(mol/m3) 0.01
    T/K 300
    下载: 导出CSV
  • [1] REUSS F F. Charge-induced flow[J]. Proceedings of the Imperial Society of Naturalists of Moscow, 1809, 3: 327-344.
    [2] RICE C L, WHITEHEAD R. Electrokinetic flow in a narrow cylindrical capillary[J]. Journal of Physical Chemistry, 1965, 69(11): 4017-4024. doi: 10.1021/j100895a062
    [3] 刘浩, 娄钦, 黄一帆. T型微通道内液滴在幂律流体中运动机理的格子Boltzmann方法研究[J]. 应用数学和力学, 2022, 43(3): 255-271. doi: 10.21656/1000-0887.420182

    LIU Hao, LOU Qin, HUANG Yifan. Study of movement mechanisms of droplets in power-law fluids in T-junction microchannels with the lattice Boltzmann method[J]. Applied Mathematics and Mechanics, 2022, 43(3): 255-271. (in Chinese) doi: 10.21656/1000-0887.420182
    [4] ZHAO C, ZHOLKOVSKIJ E, MASLIYAH J H, et al. Analysis of electroosmotic flow of power-law fluids in a slit microchannel[J]. Journal of Colloid & Interface Science, 2008, 326(2): 503-510.
    [5] 王爽, 菅永军. 周期壁面电势调制下平行板微管道中的电磁电渗流动[J]. 应用数学和力学, 2020, 41(4): 396-405. doi: 10.21656/1000-0887.400151

    WANG Shuang, JIAN Yongjun. Magnetohydrodynamic electroosmotic flow in zeta potential patterned micro-parallel channels[J]. Applied Mathematics and Mechanics, 2020, 41(4): 396-405. (in Chinese) doi: 10.21656/1000-0887.400151
    [6] AFONSO A M, ALVES M A, PINHO F T. Electro-osmotic flow of viscoelastic fluids in microchannels under asymmetric zeta potentials[J]. Journal of Engineering Mathematics, 2011, 71(1): 15-30. doi: 10.1007/s10665-010-9421-9
    [7] AFONSO A M, ALVES M A, PINHO F T. Analytical solution of mixed electro-osmotic/pressure driven flows of viscoelastic fluids in microchannels[J]. Journal of Non-Newtonian Fluid Mechanics, 2009, 159(1/3): 50-63.
    [8] SOUSA J J, AFONSO A M, PINHO F T, et al. Effect of the skimming layer on electro-osmotic-Poiseuille flows of viscoelastic fluids[J]. Microfluidics & Nanofluidics, 2011, 10(1): 107-122.
    [9] PARK H M, LEE W M. Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel[J]. Lab on a Chip, 2008, 8(7): 1163-1170. doi: 10.1039/b800185e
    [10] MONAZAMI R, MANZARI M T. Analysis of combined pressure-driven electroosmotic flow through square microchannels[J]. Microfluidics and Nanofluidics, 2007, 3(1): 123-126.
    [11] MONDAL M, MISRA R P, DE S. Combined electroosmotic and pressure driven flow in a microchannel at high zeta potential and overlapping electrical double layer[J]. International Journal of Thermal Sciences, 2014, 86(3): 48-59.
    [12] VAKILI M A, SADEGHI A, SAIDI M H, et al. Electrokinetically driven fluidic transport of power-law fluids in rectangular microchannels[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2012, 414: 440-456.
    [13] HADIGOL M, NOSRATI R, RAISEE M. Numerical analysis of mixed electroosmotic/pressure driven flow of power-law fluids in microchannels and micropumps[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2011, 374(1/3): 142-153.
    [14] DUTTA P, BESKOK A. Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite Debye layer effects[J]. Analytical Chemistry, 2001, 73(9): 1979-1986. doi: 10.1021/ac001182i
    [15] FERRÁS L, AFONSO A M, ALVES M A, et al. Electro-osmotic and pressure-driven flow of viscoelastic fluids in microchannels: analytical and semi-analytical solutions[J]. Physics of Fluids, 2016, 28(9): 093102. doi: 10.1063/1.4962357
    [16] 高峰, 石则满, 冯鑫, 等. 微流控芯片中电渗流的数值模拟与仿真研究[J]. 传感器与微系统, 2017, 36(11): 53-55. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201711016.htm

    GAO Feng, SHI Zeman, FENG Xin, et al. Numerical simulation and simulation of electroosmosis in microfluidic chip[J]. Transducer and Microsystem Technologies, 2017, 36(11): 53-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201711016.htm
    [17] 罗艳, 李鸣, 杨大勇. 微通道内电渗压力混合驱动幂律流体流动模拟[J]. 应用数学和力学, 2016, 37(4): 373-381. doi: 10.3879/j.issn.1000-0887.2016.04.005

    LUO Yan, LI Ming, YANG Dayong. Simmulation of mixed electroosmotic and pressure-driven flows of power-law fluids in microchannels[J]. Applied Mathematics and Mechanics, 2016, 37(4): 373-381. (in Chinese) doi: 10.3879/j.issn.1000-0887.2016.04.005
    [18] BRYCE R M, FREEMAN M R. Extensional instability in electro-osmotic microflows of polymer solutions[J]. Physical Review E, 2010, 81(3): 36328. doi: 10.1103/PhysRevE.81.036328
    [19] SONG L, JAGDALE P, YU L D, et al. Electrokinetic instability in microchannel viscoelastic fluid flows with conductivity gradients[J]. Physics of Fluids, 2019, 31(8): 082001.
    [20] SOUSA P C, VEGA E J, SOUSA R G, et al. Measurement of relaxation times in extensional flow of weakly viscoelastic polymer solutions[J]. Rheologica Acta, 2017, 56(1): 11-20.
    [21] FERRÁS L, AFONSO A M, ALVES M A, et al. Newtonian and viscoelastic fluid flows through an abrupt 1∶4 expansion with slip boundary conditions[J]. Physics of Fluids, 2020, 32(4): 043103.
    [22] OISHI C M, WARTINS F, AFONSO A M, et al. A numerical study of the kernel-conformation transformation for transient viscoelastic fluid flows[J]. Journal of Computational Physics, 2015, 302: 653-673.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  328
  • HTML全文浏览量:  125
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-08
  • 修回日期:  2023-02-15
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回