留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对边简支十次对称二维准晶板弯曲问题的辛分析

范俊杰 李联和 阿拉坦仓

范俊杰, 李联和, 阿拉坦仓. 对边简支十次对称二维准晶板弯曲问题的辛分析[J]. 应用数学和力学, 2023, 44(7): 834-846. doi: 10.21656/1000-0887.430267
引用本文: 范俊杰, 李联和, 阿拉坦仓. 对边简支十次对称二维准晶板弯曲问题的辛分析[J]. 应用数学和力学, 2023, 44(7): 834-846. doi: 10.21656/1000-0887.430267
FAN Junjie, LI Lianhe, ALATANCANG. Symplectic Analysis on the Bending Problem of Decagonal Symmetric 2D Quasicrystal Plates With 2 Opposite Edges Simply Supported[J]. Applied Mathematics and Mechanics, 2023, 44(7): 834-846. doi: 10.21656/1000-0887.430267
Citation: FAN Junjie, LI Lianhe, ALATANCANG. Symplectic Analysis on the Bending Problem of Decagonal Symmetric 2D Quasicrystal Plates With 2 Opposite Edges Simply Supported[J]. Applied Mathematics and Mechanics, 2023, 44(7): 834-846. doi: 10.21656/1000-0887.430267

对边简支十次对称二维准晶板弯曲问题的辛分析

doi: 10.21656/1000-0887.430267
基金项目: 

国家自然科学基金项目 11962026

国家自然科学基金项目 12002175

国家自然科学基金项目 12162027

国家自然科学基金项目 62161045

内蒙古自然科学基金项目 2020MS-01018

内蒙古自然科学基金项目 2021MS01013

内蒙古自然科学基金项目 2022ZD05

内蒙古自然科学基金项目 2023QN01007

内蒙古自治区高等学校科学技术研究项目 NJZY22519

详细信息
    作者简介:

    范俊杰(1987—),男,讲师,博士生(E-mail: tracyfan2432@126.com)

    李联和(1978—),男,教授,博士,博士生导师(E-mail: nmglilianhe@163.com)

    通讯作者:

    阿拉坦仓(1963—),男,教授,博士,博士生导师(通讯作者. E-mail: alatanca@imu.edu.cn)

  • 中图分类号: O343

Symplectic Analysis on the Bending Problem of Decagonal Symmetric 2D Quasicrystal Plates With 2 Opposite Edges Simply Supported

  • 摘要: 该文讨论了对边简支十次对称二维准晶中厚板弹性问题的辛方法. 将十次对称二维准晶弹性理论基本方程转化为Hamilton对偶方程,采用分离变量方法,获得了相应Hamilton算子矩阵的辛特征值及辛特征函数系. 证明了Hamilton算子矩阵的辛特征函数系在Cauchy主值意义下的完备性,在此基础上,基于Hamilton系统的辛特征函数展开,给出了十次对称二维准晶板弯曲问题的解析表达式.
  • 图  1  矩形准晶中厚板示意图

    Figure  1.  Schematic diagram of a rectangular quasicrystal medium thickness plate

    表  1  不同宽度和厚度比下中点处的挠度

    Table  1.   Deflections at the midpoint under different width-to-thickness ratios

    b/a h/a n uz(qa4K1/η2)
    1.0 0.2 5 0.004 846 34
    15 0.004 842 8
    25 0.004 843 01
    35 0.004 842 96
    45 0.004 842 98
    55 0.004 842 97
    65 0.004 842 97
    1.5 0.2 5 0.008 795 16
    15 0.008 791 62
    25 0.008 791 83
    35 0.008 791 78
    45 0.008 791 8
    55 0.008 791 79
    65 0.008 791 79
    2.0 0.2 5 0.011 338 6
    15 0.011 335 1
    25 0.011 335 3
    35 0.011 335 2
    45 0.011 335 3
    55 0.011 335 2
    65 0.011 335 2
    下载: 导出CSV
  • [1] SHECHTMAN D, BLECH I, GRATIAS D, et al. Metallic phase with long-range orientational order and no translational symmetry[J]. Physical Review Letters, 1984, 53(20): 1951-1953. doi: 10.1103/PhysRevLett.53.1951
    [2] DUBOIS J M. Useful Quasicrystals[M]. Singapore: World Scientific Publishing, 2005.
    [3] FAN T Y. Mathematical Theory of Elasticity of Quasicrystals and Its Applications[M]. Berlin: Springer, 2011.
    [4] RICKER M, BACHTELER J, TREBIN H R. Elastic theory of icosahedral quasicrystals application to straight dislocations[J]. The European Physical Journal B: Condensed Matter and Complex Systems, 2001, 23(3): 351-363. doi: 10.1007/s100510170055
    [5] DE P, PELCOVITS R A. Linear elasticity theory of pentagonal quasicrystals[J]. Physical Review B, 1987, 35(13): 8609-8620.
    [6] YASLAN H C. Equations of anisotropic elastodynamics in 3D quasicrystals as a symmetric hyperbolic system: deriving the time-dependent fundamental solutions[J]. Applied Mathematical Modelling, 2013, 37(18/19): 8409-8418.
    [7] GAO Y, ZHAO Y T, ZHAO B S. Boundary value problems of holomorphic vector functions in 1D QCs[J]. Physica B: Condensed Matter, 2007, 394(1): 56-61. doi: 10.1016/j.physb.2007.02.007
    [8] ZHAO X F, LI X, DING S H. Two kinds of contact problems in dodecagonal quasicrystals of point group 12 mm[J]. Acta Mechanica Solida Sinica, 2016, 29(2): 167-177. doi: 10.1016/S0894-9166(16)30105-7
    [9] GUO J H, YU J, SI R. A semi-inverse method of a Griffith crack in one-dimensional hexagonal quasicrystals[J]. Applied Mathematics and Computation, 2013, 219(14): 7445-7449. doi: 10.1016/j.amc.2013.01.031
    [10] LI X Y. Elastic field in an infinite medium of one-dimensional hexagonal quasicrystal with a planar crack[J]. International Journal of Solids and Structures, 2014, 51(6): 1442-1455. doi: 10.1016/j.ijsolstr.2013.12.030
    [11] RADI E, MARIANO P M. Stationary straight cracks in quasicrystals[J]. International Journal of Fracture, 2010, 166(1/2): 105-120.
    [12] 钟万勰. 弹性力学求解新体系[M]. 大连: 大连理工大学出版社, 1995.

    ZHONG Wanxie. A New Systematic Methodology for Theory of Elasticity[M]. Dalian: Dalian University of Technology Press, 1995. (in Chinese)
    [13] ALATANCANG, WU D Y. Completeness in the sense of Cauchy principal value of the eigenfunction systems of infinite dimensional Hamiltonian operator[J]. Science in China(Series A): Mathematics, 2009, 52(1): 173-180.
    [14] ALATANCANG, HOU G L, HAI G J. Perturbation ofspectra for a class of 2×2 operator matrices[J]. Acta Mathematicae Applicatae Sinica(English Series), 2012, 28(4): 711-720. doi: 10.1007/s10255-012-0195-x
    [15] 李锐, 田宇, 郑新然, 等. 求解弹性地基上自由矩形中厚板弯曲问题的辛-叠加方法[J]. 应用数学和力学, 2018, 39(8): 875-891. doi: 10.21656/1000-0887.390186

    LI Rui, TIAN Yu, ZHENG Xinran, et al. A symplectic superposition method for bending problems of free-edge rectangular thick plates resting on elastic foundations[J]. Applied Mathematics and Mechanics, 2018, 39(8): 875-891. (in Chinese) doi: 10.21656/1000-0887.390186
    [16] QIAO Y, HOU G, CHEN A. A complete symplectic approach for a class of partial differential equations arising from the elasticity[J]. Applied Mathematical Modelling, 2021, 89(2): 1124-1139.
    [17] 额布日力吐, 冯璐, 阿拉坦仓. 四边固支正交各向异性矩形薄板弯曲问题的辛叠加方法[J]. 应用数学和力学, 2018, 39(3): 311-323. doi: 10.21656/1000-0887.380092

    EBURILITU, FENG Lu, ALATANCANG. Analytical bending solutions of clamped orthotropic rectangular thin plates with the symplectic superposition method[J]. Applied Mathematics and Mechanics, 2018, 39(3): 311-323. (in Chinese) doi: 10.21656/1000-0887.380092
    [18] 张俊霖, 倪一文, 李庆东, 等. 吸湿老化影响下天然纤维增强复合圆柱壳屈曲分析的辛方法[J]. 应用数学和力学, 2021, 42(12): 1238-1247. doi: 10.21656/1000-0887.420018

    ZHANG Junlin, NI Yiwen, LI Qingdong, et al. A symplectic approach for buckling analysis of natural fiber reinforced composite shells under hygrothermal aging[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1238-1247. (in Chinese) doi: 10.21656/1000-0887.420018
    [19] ZHANG W X, XU X S. The symplectic approach for two-dimensional thermo-viscoelastic analysis[J]. International Journal of Engineering Science, 2012, 50(1): 56-69. doi: 10.1016/j.ijengsci.2011.09.003
    [20] LI X, YAO W A, HU X F, et al. Interfacial crack analysis between dissimilar viscoelastic media using symplectic analytical singular element[J]. Engineering Fracture Mechanics, 2019, 219: 106628. doi: 10.1016/j.engfracmech.2019.106628
    [21] XU X S, RONG D L, LIM C W, et al. An analytical symplectic approach to the vibration analysis of orthotropic graphene sheets[J]. Acta Mechanica Sinica, 2017, 33(5): 912-925. doi: 10.1007/s10409-017-0656-9
    [22] FAN J H, RONG D L, ZHOU Z H, et al. Exact solutions for forced vibration of completely free orthotropic rectangular nanoplates resting on viscoelastic foundation[J]. European Journal of Mechanics A: Solids, 2019, 73: 22-33. doi: 10.1016/j.euromechsol.2018.06.007
    [23] ZHOU Z H, YU X, YANG Z T, et al. An isogeometric-symplectic coupling approach for fracture analysis of magnetoelectroelastic bimaterials with crack terminating at the interface[J]. Engineering Fracture Mechanics, 2019, 216: 106510. doi: 10.1016/j.engfracmech.2019.106510
    [24] ZHOU Z H, NI Y W, ZHU S B, et al. An accurate and straightforward approach to thermo-electro-mechanical vibration of piezoelectric fiber-reinforced composite cylindrical shells[J]. Composite Structures, 2019, 207: 292-303. doi: 10.1016/j.compstruct.2018.08.076
    [25] FAN J J, LI L H, CHEN A. Symplectic method for the thin piezoelectric plates[J]. Crystals, 2022, 12(5): 681. doi: 10.3390/cryst12050681
    [26] ZHANG K, GE M H, ZHAO C, et al. Free vibration of nonlocal Timoshenko beams made of functionally graded materials by symplectic method[J]. Composites(Part B): Engineering, 2019, 156: 174-184. doi: 10.1016/j.compositesb.2018.08.051
    [27] ZHANG K, DENG Z C, XU X J, et al. Symplectic analysis for wave propagation of hierarchical honeycomb structures[J]. Acta Mechanica Solida Sinica, 2015, 28(3): 294-304. doi: 10.1016/S0894-9166(15)30016-1
    [28] ZHOU Z H, YANG Z T, XU W, et al. Evaluation ofelectroelastic singularity of finite-size V-notched one-dimensional hexagonal quasicrystalline bimaterials with piezoelectric effect[J]. Theoretical and Applied Fracture Mechanics, 2019, 100: 139-153.
    [29] YANG Z T, YU X, XU C H, et al. A novel Hamiltonian-based isogeometric analysis of one-dimensional hexagonal piezoelectric quasicrystal with mode Ⅲ electrically permeable/impermeable cracks[J]. Theoretical and Applied Fracture Mechanics, 2020, 107: 102552. doi: 10.1016/j.tafmec.2020.102552
    [30] WANG H, LI L H, HUANG J J, et al. Symplectic approach for the plane elasticity problem of quasicrystals with point group 10 mm[J]. Applied Mathematical Modelling, 2015, 39(12): 3306-3316.
    [31] WANG H, CHEN J R, ZHANG X Y, et al. On symplectic analysis for the plane elasticity problem of quasicrystals with point group 12 mm[J]. Abstract and Applied Analysis, 2014, 2014: 367018.
    [32] QIAO Y, HOU G, CHEN A. Symplectic approach for plane elasticity problems of two dimensional octagonal quasicrystals[J]. Applied Mathematics and Computation, 2021, 400: 126043.
    [33] LI L H, LIU G T. Decagonal quasicrystal plate with elliptic holes subjected to out-of-plane bending moments[J]. Physics Letters A, 2014, 378(10): 839-844.
    [34] HOU G L, QI G W, XU Y N, et al. The separable Hamiltonian system and complete biorthogonal expansion method of Mindlin plate bending problems[J]. Science China: Physics, Mechanics & Astronomy, 2013, 56(1): 974-980.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  500
  • HTML全文浏览量:  182
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-29
  • 修回日期:  2022-10-21
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回