留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gauss白噪声激励下的永磁同步电动机模型的分岔分析

叶正伟 邓生文 梁相玲

叶正伟, 邓生文, 梁相玲. Gauss白噪声激励下的永磁同步电动机模型的分岔分析[J]. 应用数学和力学, 2023, 44(7): 884-894. doi: 10.21656/1000-0887.430285
引用本文: 叶正伟, 邓生文, 梁相玲. Gauss白噪声激励下的永磁同步电动机模型的分岔分析[J]. 应用数学和力学, 2023, 44(7): 884-894. doi: 10.21656/1000-0887.430285
YE Zhengwei, DENG Shengwen, LIANG Xiangling. Bifurcation Analysis of the Permanent Magnet Synchronous Motor Model Under White Gaussian Noises[J]. Applied Mathematics and Mechanics, 2023, 44(7): 884-894. doi: 10.21656/1000-0887.430285
Citation: YE Zhengwei, DENG Shengwen, LIANG Xiangling. Bifurcation Analysis of the Permanent Magnet Synchronous Motor Model Under White Gaussian Noises[J]. Applied Mathematics and Mechanics, 2023, 44(7): 884-894. doi: 10.21656/1000-0887.430285

Gauss白噪声激励下的永磁同步电动机模型的分岔分析

doi: 10.21656/1000-0887.430285
基金项目: 

国家自然科学基金项目 61863022

详细信息
    通讯作者:

    叶正伟(1993—),男,讲师,硕士(通讯作者. E-mail: yezhengweiff@163.com)

  • 中图分类号: O211.63; TM351

Bifurcation Analysis of the Permanent Magnet Synchronous Motor Model Under White Gaussian Noises

  • 摘要: 针对永磁同步电动机(PMSM)模型引入Gauss白噪声,根据极坐标变换和随机平均法得到系统Itô随机微分方程,并计算出系统概率密度函数,通过数值模拟揭示了系统P-分岔的机理.此外,探讨了系统在双参数空间中的复杂动力学,仿真结果表明在参数空间中出现了大量的“鱼”形周期区域,并且这些“鱼”形周期区域不可避免地受到噪声的影响变得紊乱.值得注意的是,从数值模拟结果中发现了一个新的现象,一定的噪声强度下,可以诱导系统在周期振荡区域内的收敛行为,这也表明了噪声对系统影响的双面性.
  • 图  1  随噪声强度D变化的联合概率密度图及其俯视图

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  The joint probability density function with the change of noise intensity D

    图  2  不同噪声强度D下的平稳概率密度图

    Figure  2.  The stationary probability density function with the change of noise intensity D

    图  3  不同噪声强度D下的系统分岔图

    Figure  3.  The bifurcation diagram with the change of noise intensity D

    图  4  不同参数平面上的分岔图(左)和Lyapunov指数图(右)

    Figure  4.  The bifurcation diagram(left) and the Lyapunov exponent diagram (right) in planes with different parameters

    图  5  随噪声强度D变化的最大Lyapunov指数图

    Figure  5.  The largest Lyapunov exponent diagram with the change of the noise intensity

  • [1] HEMATI N, LEU M C. A complete model characterization of brushless DC motors[J]. IEEE Transactions on Industry Application, 1992, 28(1): 172-180. doi: 10.1109/28.120227
    [2] HEMATI N. Strange attractors in brushless DC motor[J]. IEEE Transactions on Circuits and Systems , 1994, 41(1): 40-45.
    [3] LI Z, PARK J B, ZHU Y, et al. Bifurcations and chaos in a permanent-magnet synchronous motor[J]. IEEE Transactions on Circuits and systems , 2002, 49(3): 383-387. doi: 10.1109/81.989176
    [4] LI Z, ZHANG B, MAO Z, et al. Bifurcation analysis of the permanent-magnet synchronous motors models based on the center manifold theorem[J]. Control Theory and Application, 2000, 17(3): 317-320.
    [5] 唐传胜, 戴跃洪. 参数不确定永磁同步电动机混沌系统的有限时间稳定控制[J]. 物理学报, 2013, 62(18): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201318009.htm

    TANG Chuansheng, DAI Yuehong. Finite-time stability control of permanent magnet synchronous motor chaotic system with parameters uncertain[J]. Acta Physica Sinica, 2013, 62(18): 68-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201318009.htm
    [6] 王碧轩. 永磁同步电机的非线性动力学特征研究及其混沌控制[D]. 硕士学位论文. 兰州: 兰州交通大学, 2015.

    WANG Bixuan. Nonlinear dynamics and chaos control of the permanent-magnet synchronous motor[D]. Master Thesis. Lanzhou: Lanzhou Jiaotong University, 2015. (in Chinese)
    [7] RAO X, CHU Y, CHANG Y, et al. Dynamics of a cracked rotor system with oil-film force in parameter space[J]. Nonlinear Dynamics, 2017, 88: 2347-2357. doi: 10.1007/s11071-017-3381-9
    [8] RAO X, CHU Y, CHANG Y, et al. Broken Farey tree and fractal in a hexagonal centrifugal governor with a spring[J]. Chaos, Solit and Fractals, 2018, 107: 251-255. doi: 10.1016/j.chaos.2018.01.015
    [9] MA C, WANG L, YIN Z, et al. Sliding mode control of chaos in the noise-perturbed Permanent magnet synchronous motor with non-smooth air-gap[J]. International Journal of Mining Science and Technology, 2011, 21(6): 835-838.
    [10] 杨黎晖, 葛扬, 马西奎. 永磁同步风力发电机随机分岔现象的全局分析[J]. 物理学报, 2017, 66(19): 8-18. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201719001.htm

    YANG Lihui, GE Yang, MA Xikui. Global analysis of stochastic bifurcation in permanent magnet synchronous generator for wind turbine system[J]. Acta Physica Sinica, 2017, 66(19): 8-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201719001.htm
    [11] XU P, JIN Y. Stochastic resonance in multi-stable coupled systems driven by two driving signals[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 492: 1281-1289. doi: 10.1016/j.physa.2017.11.056
    [12] HE M, WEI X, SUN Z, et al. Characterization of stochastic resonance in a bistable system with Poisson white noise using statistical complexity measures[J]. Communications in Nonlinear Science & Numerical Simulation, 2015, 28(1/3): 39-49.
    [13] JIAO S, JIANG W, LEI S, et al. Research on detection method of multi-frequency weak signal based on stochastic resonance and chaos characteristics of Duffing system[J]. Chinese Journal of Physics, 2020, 64: 333-347. doi: 10.1016/j.cjph.2019.12.001
    [14] 陈乾君, 蒋媛, 刘子建, 等. 具有Gilpin-Ayala增长的随机捕食-食饵模型的动力学行为[J]. 应用数学和力学, 2022, 43(4): 453-468. doi: 10.21656/1000-0887.420203

    CHEN Qianjun, JIANG Yuan, LIU Zijian, et al. Dynamic behavior of a stochastic predator prey model with the Gilpin-Ayala growth[J]. Applied Mathematics and Mechanics, 2022, 43(4): 453-468. (in Chinese) doi: 10.21656/1000-0887.420203
    [15] 曹晓春, 荆文君, 靳祯. 基于白噪声的网络传染病模型动力学分析[J]. 应用数学和力, 2022, 43(6): 690-699. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX202206010.htm

    CAO Xiaochun, JING Wenjun, JIN Zhen. Dynamic analysis of the network epidemic model based on white noise[J]. Applied Mathematics and Mechanics, 2022, 43(6): 690-699. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX202206010.htm
    [16] ZHANG J, CHU Y. The invariant measure and stationary probability density computing model based analysis of the governor system[J]. Cluster Computing, 2017, 20(2): 1437-1447.
    [17] ZHANG J, LIANG X, QIAO S, et al. Stochastic stability and bifurcation of centrifugal governor system subject to color noise[J]. International Journal of Bifurcation and Chaos, 2021, 32(5): 2250061.
    [18] 张美娇, 张建刚, 南梦冉, 等. 色噪声激励下水轮机调节系统的分岔[J]. 山东大学学报(理学版), 2021, 56(12): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX202112014.htm

    ZHANG Meijiao, ZHANG Jiangang, NAN Mengran, et al. Bifurcation of hydraulic turbine governing system under color noise excitation[J]. Journal of Shandong University (Science Edition), 2021, 56(12): 94-99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX202112014.htm
    [19] 张祥云, 吴志强. 噪声激励下水平扫视眼动系统的随机分岔[J]. 应用数学和力学, 2017, 38(1): 126-132. doi: 10.21656/1000-0887.370513

    ZHANG Xiangyun, WU Zhiqiang. Stochastic bifurcation in the saccadic system driven by noise[J]. Applied Mathematics and Mechanics, 2017, 38(1): 126-132. (in Chinese) doi: 10.21656/1000-0887.370513
    [20] 宋志环. 永磁同步电动机电磁振动噪声源识别技术的研究[D]. 博士学位论文. 沈阳: 沈阳工业大学, 2010.

    SONG Zhihuan. Research on recognition of electromagnetic noise and vibration of the permanent magnet synchronous machine[D]. PhD Thesis. Shenyang: Shenyang University of Technology, 2010. (in Chinese)
    [21] 白宝丽, 张建刚, 杜文举, 等. 一类随机的SIR流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 56(4): 72-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX201704013.htm

    BAI Baoli, ZHANG Jiangang, DU Wenju, et al. Dynamic behavior analysis of a stochastic SIR epidemic model[J]. Journal of Shandong University (Science Edition), 2017, 56(4): 72-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX201704013.htm
    [22] 顾凤蛟, 高燕, 任丽佳, 等. 基于Lévy噪声的混合时滞中立型神经网络自适应同步研究[J]. 应用数学和力学, 2020, 41(11): 1259-1274. doi: 10.21656/1000-0887.400350

    GU Fengjiao, GAO Yan, REN Lijia, et al. Adaptive synchronization of neutral networks with mixed delays and Lévy noises[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1259-1274. (in Chinese) doi: 10.21656/1000-0887.400350
    [23] WOLF A, SWIFT J B, SWINNEY H L, et al. Determining Lyapunov exponents from a time series[J]. Physica D: Nonlinear Phenomena, 1985, 16(3): 285-317.
  • 加载中
图(5)
计量
  • 文章访问数:  391
  • HTML全文浏览量:  138
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-16
  • 修回日期:  2023-04-19
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回