留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SPH方法的瞬态非等温黏弹性Couette流的数值模拟

许晓阳 赵雨婷

许晓阳, 赵雨婷. 基于SPH方法的瞬态非等温黏弹性Couette流的数值模拟[J]. 应用数学和力学, 2023, 44(6): 654-665. doi: 10.21656/1000-0887.430318
引用本文: 许晓阳, 赵雨婷. 基于SPH方法的瞬态非等温黏弹性Couette流的数值模拟[J]. 应用数学和力学, 2023, 44(6): 654-665. doi: 10.21656/1000-0887.430318
XU Xiaoyang, ZHAO Yuting. Numerical Simulation of Transient Non-Isothermal Viscoelastic Couette Flows Based on the SPH Method[J]. Applied Mathematics and Mechanics, 2023, 44(6): 654-665. doi: 10.21656/1000-0887.430318
Citation: XU Xiaoyang, ZHAO Yuting. Numerical Simulation of Transient Non-Isothermal Viscoelastic Couette Flows Based on the SPH Method[J]. Applied Mathematics and Mechanics, 2023, 44(6): 654-665. doi: 10.21656/1000-0887.430318

基于SPH方法的瞬态非等温黏弹性Couette流的数值模拟

doi: 10.21656/1000-0887.430318
基金项目: 

国家自然科学基金项目 12071367

陕西省“特支计划”青年拔尖人才项目 289890259

详细信息
    通讯作者:

    许晓阳(1987—),男,教授,博士(通讯作者. E-mail: xiaoyang.xu@xust.edu.cn)

  • 中图分类号: O242

Numerical Simulation of Transient Non-Isothermal Viscoelastic Couette Flows Based on the SPH Method

  • 摘要: 基于光滑粒子流体动力学(smoothed particle hydrodynamics,SPH)方法对瞬态非等温黏弹性流动问题进行了数值模拟.首先,模拟了等温情况下基于Oldroyd-B模型的黏弹性Couette流动;随后,将其扩展到非等温情况下进行模拟,其中选用Reynolds指数模型来评估黏度和松弛时间的温度依赖.通过与有限体积方法解的比较和对数值收敛性的评价,验证了SPH方法模拟非等温黏弹性流动问题的准确性和有效性.讨论了非等温流动相较于等温流动的不同流动特征,分析了温度依赖系数、Péclet数等对黏弹性流动过程的影响.数值结果表明,SPH方法可准确有效地模拟非等温黏弹性流动问题.
  • 图  1  固壁边界处理示意图

    Figure  1.  Sketch of the wall boundary treatment

    图  2  黏弹性Couette流的几何区域

    Figure  2.  The geometric region of the viscoelastic Couette flow

    图  3  等温黏弹性Couette流动在t=1时刻的粒子分布和速度分布

    Figure  3.  The particle distribution and the velocity distribution of the isothermal viscoelastic Couette flow at t=1

    图  4  等温黏弹性Couette流动A, B, C三点处的速度u和弹性剪切应力τxy随时间的变化:SPH数值解与解析解的对比

    Figure  4.  Isothermal viscoelastic Couette flows at 3 points A, B and C: a comparison of SPH and analytical solutions for velocity u and elastic shear stress τxy

    图  5  Re= 1和10时,等温黏弹性Couette流动的SPH模拟:点B处的速度u和弹性剪切应力τxy随时间的变化

    Figure  5.  SPH simulations of isothermal viscoelastic Couette flows with Re= 1 and 10: the time changes of velocity u and elastic shear stress τxy at point B

    图  6  非等温黏弹性Couette流的SPH模拟:φ对点B处速度u和弹性剪切应力τxy随时间变化的影响

    Figure  6.  The SPH simulation of the non-isothermal viscoelastic Couette flow: the effect of temperature dependent parameter φ on the time changes of velocity u and elastic shear stress τxy at point B

    图  7  非等温黏弹性Couette流的SPH模拟:Pe对点B处速度u和弹性剪切应力τxy随时间变化的影响

    Figure  7.  The SPH simulation of the non-isothermal viscoelastic Couette flow: the effect of Pe on the time changes of velocity u and elastic shear stress τxy at point B

    图  8  非等温黏弹性Couette流的SPH模拟(Pe=1, φ=0.01):6个不同时刻的温度关于y的分布

    Figure  8.  The SPH simulation of the non-isothermal viscoelastic Couette flow (Pe=1, φ=0.01): the temperature distribution vs. y at 6 different moments

    图  9  利用SPH得到的温度分布图的收敛性分析及其与FVM解的比较

    Figure  9.  Convergence analysis of the temperature distribution obtained with the SPH and the comparison with the FVM solution

    图  10  非等温黏弹性Couette流的SPH模拟:β对点B处速度u和弹性剪切应力τxy随时间变化的影响

    Figure  10.  The SPH simulation of the non-isothermal viscoelastic Couette flow: the effect of β on the time changes of velocity u and elastic shear stress τxy at point B

    图  11  非等温黏弹性Couette流的SPH模拟:Wi对点B处速度u和弹性剪切应力τxy随时间变化的影响

    Figure  11.  The SPH simulation of the non-isothermal viscoelastic Couette flow: the effect of Wi on the time changes of velocity u and elastic shear stress τxy at point B

  • [1] 程波, 徐峰. 考虑细胞外基质黏弹性行为的细胞黏附力学模型[J]. 应用数学和力学, 2021, 42(10): 1074-1080. doi: 10.21656/1000-0887.420259

    CHENG Bo, XU Feng. A molecular clutch model of cellular adhesion on viscoelastic substrate[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1074-1080. (in Chinese) doi: 10.21656/1000-0887.420259
    [2] PETERS G W M, BAAIJENS F P T. Modelling of non-isothermal viscoelastic flows[J]. Journal of Non-Newtonian Fluid Mechanics, 1997, 68(2/3): 205-224.
    [3] MEBURGER S, NIETHAMMER M, BOTHE D, et al. Numerical simulation of non-isothermal viscoelastic flows at high Weissenberg numbers using a finite volume method on general unstructured meshes[J]. Journal of Non-Newtonian Fluid Mechanics, 2021, 287: 104451. doi: 10.1016/j.jnnfm.2020.104451
    [4] MORENO L, CODINA R, BAIGES J. Numerical simulation of non-isothermal viscoelastic fluid flows using a VMS stabilized finite element formulation[J]. Journal of Non-Newtonian Fluid Mechanics, 2021, 296: 104640. doi: 10.1016/j.jnnfm.2021.104640
    [5] GAO P. Three dimensional finite element computation of the non-isothermal polymer filling process by the phase field model[J]. Advances in Engineering Software, 2022, 172: 103207. doi: 10.1016/j.advengsoft.2022.103207
    [6] GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375-389. doi: 10.1093/mnras/181.3.375
    [7] LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82: 1013-1024. doi: 10.1086/112164
    [8] LIU G R, LIU M B. Smoothed Particle Hydrodynamics: a Meshfree Particle Method[M]. Singapore: World Scientific, 2003.
    [9] XU X, JIANG Y L, YU P. SPH simulations of 3D dam-break flow against various forms of the obstacle: toward an optimal design[J]. Ocean Engineering, 2021, 229: 108978. doi: 10.1016/j.oceaneng.2021.108978
    [10] PENG Y X, ZHANG A M, MING F R. Numerical simulation of structural damage subjected to the near-field underwater explosion based on SPH and RKPM[J]. Ocean Engineering, 2021, 222: 108576. doi: 10.1016/j.oceaneng.2021.108576
    [11] 黄志涛, 杨瑜, 邵家儒, 等. 罐车防晃结构SPH模拟研究[J]. 应用数学和力学, 2020, 41(7): 760-770. doi: 10.21656/1000-0887.400234

    HUANG Zhitao, YANG Yu, SHAO Jiaru, et al. Numerical simulation of sloshing mitigating structures in tank trucks with the SPH method[J]. Applied Mathematics and Mechanics, 2020, 41(7): 760-770. (in Chinese) doi: 10.21656/1000-0887.400234
    [12] MENG Z F, ZHANG A M, YAN J L, et al. A hydroelastic fluid-structure interaction solver based on the Riemann-SPH method[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 390: 114522. doi: 10.1016/j.cma.2021.114522
    [13] ELLERO M, TANNER R I. SPH simulations of transient viscoelastic flows at low Reynolds number[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 132(1/3): 61-72.
    [14] FANG J, OWENS R G, TACHER L, et al. A numerical study of the SPH method for simulating transient viscoelastic free surface flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2006, 139(1/2): 68-84.
    [15] MURASHIMA T, TANIGUCHI T. Multiscale simulation of history-dependent flow in entangled polymer melts[J]. Europhysics Letters, 2011, 96(1): 18002. doi: 10.1209/0295-5075/96/18002
    [16] 杨波, 欧阳洁. 基于SPH方法的瞬态粘弹性流体的数值模拟[J]. 计算物理, 2010, 27(5): 679. doi: 10.3969/j.issn.1001-246X.2010.05.007

    YANG Bo, OUYANG Jie. Numerical simulation of transient viscoelastic flows using SPH method[J]. Chinese Journal of Computational Physics, 2010, 27(5): 679. (in Chinese) doi: 10.3969/j.issn.1001-246X.2010.05.007
    [17] XU X, DENG X L. An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids[J]. Computer Physics Communications, 2016, 201: 43-62. doi: 10.1016/j.cpc.2015.12.016
    [18] KING J R C, LIND S J. High Weissenberg number simulations with incompressible smoothed particle hydrodynamics and the log-conformation formulation[J]. Journal of Non-Newtonian Fluid Mechanics, 2021, 293: 104556. doi: 10.1016/j.jnnfm.2021.104556
    [19] DUQUE-DAZA C, ALEXIADIS A. A simplified framework for modelling viscoelastic fluids in discrete multiphysics[J]. Chem Engineering, 2021, 5(3): 61.
    [20] VAHABI M, HADAVANDMIRZAEI H, KAMKARI B, et al. Interaction of a pair of in-line bubbles ascending in an Oldroyd-B liquid: a numerical study[J]. European Journal of Mechanics B: Fluids, 2021, 85: 413-429. doi: 10.1016/j.euromechflu.2020.11.004
    [21] SPANJAARDS M M A, HULSEN M A, ANDERSON P D. Computational analysis of the extrudate shape of three-dimensional viscoelastic, non-isothermal extrusion flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 282: 104310. doi: 10.1016/j.jnnfm.2020.104310
    [22] 白羽, 方慧灵, 张艳. Oldroyd-B流体绕拉伸楔形体的非稳态滑移流动与传热分析[J]. 应用数学和力学, 2022, 43(3): 272-280. doi: 10.21656/1000-0887.420197

    BAI Yu, FANG Huiling, ZHANG Yan. Unsteady slip flow and heat transfer analysis of Oldroyd-B fluid over the stretching wedge[J]. Applied Mathematics and Mechanics, 2022, 43(3): 272-280. (in Chinese) doi: 10.21656/1000-0887.420197
    [23] LYU H G, SUN P N. Further enhancement of the particle shifting technique: towards better volume conservation and particle distribution in SPH simulations of violent free-surface flows[J]. Applied Mathematical Modelling, 2022, 101: 214-238. doi: 10.1016/j.apm.2021.08.014
    [24] XU X, YU P. A multiscale SPH method for simulating transient viscoelastic flows using bead-spring chain model[J]. Journal of Non-Newtonian Fluid Mechanics, 2016, 229: 27-42. doi: 10.1016/j.jnnfm.2016.01.005
    [25] BONET J, LOK T S L. Variational and momentum preservation aspects of smooth particle hydrodynamic formulations[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 180(1/2): 97-115.
    [26] SHAO S, LO E Y M. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface[J]. Advances in Water Resources, 2003, 26(7): 787-800. doi: 10.1016/S0309-1708(03)00030-7
    [27] TOMÉ M F, MANGIAVACCHI N, CUMINATO J A, et al. A finite difference technique for simulating unsteady viscoelastic free surface flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2002, 106(2/3): 61-106.
    [28] ZHUANG X, OUYANG J, LI W, et al. Three-dimensional simulations of non-isothermal transient flow and flow-induced stresses during the viscoelastic fluid filling process[J]. International Journal of Heat and Mass Transfer, 2017, 104: 374-391. doi: 10.1016/j.ijheatmasstransfer.2016.08.064
  • 加载中
图(11)
计量
  • 文章访问数:  442
  • HTML全文浏览量:  158
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2023-01-09
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回