留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光增材制造金属材料疲劳寿命研究

廖宇 钟贵勇 舒茂盛 柏林 江旭来

廖宇,钟贵勇,舒茂盛,柏林,江旭来. 激光增材制造金属材料疲劳寿命研究 [J]. 应用数学和力学,2023,44(2):201-208 doi: 10.21656/1000-0887.430319
引用本文: 廖宇,钟贵勇,舒茂盛,柏林,江旭来. 激光增材制造金属材料疲劳寿命研究 [J]. 应用数学和力学,2023,44(2):201-208 doi: 10.21656/1000-0887.430319
LIAO Yu, ZHONG Guiyong, SHU Maosheng, BAI Lin, JIANG Xulai. A Study on the Fatigue Life of the Laser Additive Manufactured Metallic Material[J]. Applied Mathematics and Mechanics, 2023, 44(2): 201-208. doi: 10.21656/1000-0887.430319
Citation: LIAO Yu, ZHONG Guiyong, SHU Maosheng, BAI Lin, JIANG Xulai. A Study on the Fatigue Life of the Laser Additive Manufactured Metallic Material[J]. Applied Mathematics and Mechanics, 2023, 44(2): 201-208. doi: 10.21656/1000-0887.430319

激光增材制造金属材料疲劳寿命研究

doi: 10.21656/1000-0887.430319
详细信息
    作者简介:

    廖宇(1990—),男,工程师,硕士(通讯作者. E-mail:610746336@qq.com

  • 中图分类号: O346.2

A Study on the Fatigue Life of the Laser Additive Manufactured Metallic Material

  • 摘要:

    随着军用飞机上越来越多的结构件使用增材制造(AM)技术成形,对增材制造材料和结构疲劳特性的研究就变得十分迫切。为了研究激光增材制造(选区激光熔化成形,SLM)铝合金以及钛合金的疲劳寿命特性,设计了一系列带各种结构细节的模拟试验件,进行常幅谱和随机谱下的试验,统计分析了各组试验的基本可靠性寿命,并得到了可靠度安全寿命曲线。断口分析发现铝合金试验件缺陷较多,存在混合失效特征,而钛合金试验件疲劳分散性较锻件大。

  • 图  1  试验件形式(单位:mm):(a) 试件类型1;(b) 试件类型2;(c) 试件类型3;(d) 试件类型4

    Figure  1.  The shapes and dimensions of the specimens (unit: mm): (a)specimen type 1; (b) specimen type 2;(c) specimen type 3; (d) specimen type 4

    图  2  可靠度安全寿命曲线:(a) 铝合金;(b) 钛合金

    注 为了解释图中的颜色,读者可以参考本文的电子网页版本,后同。

    Figure  2.  Safety life curves with certain reliabilities: (a) AlSi10Mg; (b) TC4 ELI

    图  3  SLMed试件与TC4-DT锻件对比

    Figure  3.  Comparison of the SLMed TC4 ELI specimen and the TC4-DT forging specimen

    图  4  工业CT扫描缺陷(软件模拟计算截图):(a) 试件类型4,08号件;(b) 试件类型4,09号件

    Figure  4.  Scan defects by the industrial CT (screenshots of software simulation): (a) No.08 of specimen type 4; (b) No.09 of specimen type 4

    图  5  部分试件断口示意图:(a) 试件类型3正常起裂;(b) 试件类型1缺陷起裂;(c) 试件类型4正常起裂;(d) 试件类型3多裂纹源

    Figure  5.  Fractography of some specimens: (a) normal initiation in type 3; (b) defect initiation in type 1; (c) normal initiation in type 4; (d) multiple crack initiation in type 3

    表  1  AlSi10Mg粉末和TC4 ELI粉末的主要化学成分

    Table  1.   Main chemical compositions of the AlSi10Mg powder and the TC4 ELI powder

    AlSi10MgelementAlSiMgFeMnTi 
    mass fractionbalance9.0% ~ 11.0%0.2% ~ 0.5%< 0.55%< 0.45%< 0.15% 
    TC4 ELIellementTiVAlSnMoCuMn
    mass fractionbalance3.4% ~ 4.5%5.5% ~ 6.5%< 0.1%< 0.1%< 0.1%< 0.1%
    no more than 0.2% in total
    下载: 导出CSV

    表  2  试验矩阵

    Table  2.   The test matrix

    materialspecimentest spectrumstructural detail
    AlSi10Mgtype 1constant amplitude/LT=20%
    type 3random spectrumKt=1.37
    TC4 ELItype 2constant amplitude/LT=20%
    type 4random spectrumKt=5.10
    下载: 导出CSV

    表  3  试验结果

    Table  3.   Test results

    AlSi10MgTC4 ELI
    specimenσmax/MPaN99.9/90specimenσmax/MPaN99.9/90
    constant amplitude spectrum (N99.9/90 in cycles)type 112135 635type 231447 214
    11076 23228084 662
    type 320044 799type 460723 346
    19642 044 55239 926
    random spectrum (N99.9/90 in flight hour)type 11711 683type 25722 924
    1555 4615204 563
    1407 4494688 238
    type 32522 629type 49332 959
    2305 2818774 205
    2207 282 7865 239
    下载: 导出CSV

    表  4  拟合结果

    Table  4.   Fitting results

    materialspecimenstructural detailfitting equation
    AlSi10Mgtype 1LT=20%σ7.334= 5×1019 N
    type 3Kt=1.37σ7.522= 3×1021 N
    TC4 ELItype 2LT=20%σ5.170= 5×1017 N
    type 4Kt=5.10σ3.173= 8×1012 N
    下载: 导出CSV

    表  5  试件1疲劳分散性对比

    Table  5.   Comparison of fatigue scatter for specimen type 1

    materialAlSi10Mg7475-T73517050-T7651
    logarithmic standard deviation0.1160.1150.201
    0.1160.2300.117
    0.1670.1310.209
    average0.1330.1590.176
    下载: 导出CSV

    表  6  试件4疲劳分散性对比

    Table  6.   Comparison of the fatigue scatter for specimen type 4

    materialspectrumσmax/MPanumberfatigue life (cycles)number of defects
    TC4 ELIconstant amplitude52405>100 00000
    08>400 000 (uncracked)4
    0972 0005
    1336 0000
    下载: 导出CSV

    表  7  试验件断口反推结果

    Table  7.   The inference results from the fractography of the specimens

    specimenmaterialtotal life (cycles)life of crack initiation (cycles)life of crack growth (cycles)growth life to total life
    fig. 5(a)AlSi10Mg115 000108 0007 0006.10%
    fig. 5(c)TC4 ELI455 000437 00018 0004.00%
    下载: 导出CSV
  • [1] 王向明, 苏亚东, 吴斌. 增材技术在飞机结构研制中的应用[J]. 航空制造技术, 2014, 57(22): 16-20

    WANG Xiangming, SU Yadong, WU bin. Application of additive manufacturing technology on aircraft structure development[J]. Aeronautical Manufacturing Technology, 2014, 57(22): 16-20.(in Chinese)
    [2] 苏亚东, 吴斌, 王向明. 增材制造技术在航空装备深化应用中的研究[J]. 航空制造技术, 2016, 59(12): 42-48

    SU Yadong, WU bin, WANG Xiangming. Research on further application of additive manufacturing technology on aviation equipment[J]. Aeronautical Manufacturing Technology, 2016, 59(12): 42-48.(in Chinese)
    [3] 张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44(2): 122-128 doi: 10.11868/j.issn.1001-4381.2016.02.019

    ZHANG Xuejun, TANG Siyi, ZHAO Hengyue, et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering, 2016, 44(2): 122-128.(in Chinese) doi: 10.11868/j.issn.1001-4381.2016.02.019
    [4] 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690-2698

    WANG Huaming. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690-2698.(in Chinese)
    [5] 林鑫, 黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学:信息科学, 2015, 45(9): 1111-1126 doi: 10.1360/N112014-00245

    LIN Xin, HUANG Weidong. Laser additive manufacturing of high-performance metal components[J]. Scientia Sinica Informationis, 2015, 45(9): 1111-1126.(in Chinese) doi: 10.1360/N112014-00245
    [6] 潘新, 张英伟, 刘艳梅, 等. 金属增材制造技术应用于军用飞机维修保障浅析[J]. 航空制造技术, 2021, 64(3): 34-43

    PAN Xin, ZHANG Yingwei, LIU Yanmei, et al. Applications of metal additive manufacturing technology in maintenance and support for military aircraft[J]. Aeronautical Manufacturing Technology, 2021, 64(3): 34-43.(in Chinese)
    [7] 杨占尧, 赵敬云. 增材制造与3D打印技术及应用[M]. 北京: 清华大学出版社, 2017: 69-70.

    YANG Zhanyao, ZHAO Jingyun. Additive Manufacturing and 3D Printing Technology and Application[M]. Beijing: Tsinghua University Press, 2017: 69-70. (in Chinese)
    [8] 顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5): 0500002 doi: 10.3788/CJL202047.0500002

    GU Dongdong, ZHANG Hongmei, CHEN Hongyu, et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 2020, 47(5): 0500002.(in Chinese) doi: 10.3788/CJL202047.0500002
    [9] 常坤, 梁恩泉, 张韧, 等. 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报, 2021, 35(3): 3176-3182 doi: 10.11896/cldb.19100153

    CHANG Kun, LIANG Enquan, ZHANG Ren, et al. Status of metal additive manufacturing and its application research in the field of civil aviation[J]. Materials Reports, 2021, 35(3): 3176-3182.(in Chinese) doi: 10.11896/cldb.19100153
    [10] 邹田春, 陈敏英, 祝贺, 等. 激光选区熔化AlSi7Mg合金高周疲劳性能研究[J]. 激光与光电子学进展, 2020, 57(23): 234-241

    ZHOU Tianchun, CHEN Minying, ZHU He, et al. Research on high cycle fatigue performance of AlSi7Mg alloy fabricated by selective laser melting[J]. Laser and Optoelectronics Progress, 2020, 57(23): 234-241.(in Chinese)
    [11] 孙文博, 马玉娥. 选区激光熔化TC4钛合金疲劳裂纹扩展行为研究[J]. 航空科学技术, 2022, 33(3): 71-76

    SUN Wenbo, MA Yu’e. Research on fatigue crack growth behavior of selective laser melted TC4 titanium alloy[J]. Aeronautics Science & Technology, 2022, 33(3): 71-76.(in Chinese)
    [12] 张继奎, 孔祥艺, 马少俊, 等. 激光增材制造高强高韧TC11钛合金力学性能及航空主承力结构应用分析[J]. 航空学报, 2021, 42(10): 525430

    ZHANG Jikui, KONG Xiangyi, MA Shaojun, et al. Laser additive manufactured high strength-toughness TC11 titanium alloy: mechanical properties and application in airframe load-bearing structure[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 525430.(in Chinese)
    [13] 肖来荣, 谭威, 刘黎明, 等. 激光增材制造GH3536合金的低周疲劳行为[J]. 中国激光, 2021, 48(22): 2202009 doi: 10.3788/CJL202148.2202009

    XIAO Lairong, TAN Wei, LIU Liming, et al. Low cycle fatigue behavior of GH3536 alloy formed via laser additive manufacturing[J]. Chinese Journal of Lasers, 2021, 48(22): 2202009.(in Chinese) doi: 10.3788/CJL202148.2202009
    [14] 薛志远. 选区激光熔化Inconel 625疲劳裂纹扩展行为研究[D]. 硕士学位论文. 南昌: 南昌航空大学, 2019.

    XUE Zhiyuan. Fatigue crack growth behavior of a selective laser melting Inconel 625[D]. Master Thesis. Nanchang: Nanchang Hangkong University, 2019. (in Chinese)
    [15] 李亚, 易志坚, 王敏, 等. 裂纹面局部均布荷载下Ⅰ型裂纹有限宽板应力强度因子[J]. 应用数学和力学, 2020, 41(10): 538-546

    LI Ya, YI Zhijian, WANG Min, et al. The stress intensity factor of a finite-width plate with a mode-Ⅰ center crack subjected to uniform stress on the crack surface near the crack tip[J]. Applied Mathematics and Mechanics, 2020, 41(10): 538-546.(in Chinese)
    [16] 万华亮, 王奇志. 增材制造铝镁合金AlSi10Mg的疲劳性能研究[J]. 强度与环境, 2019, 46(3): 20-26 doi: 10.19447/j.cnki.11-1773/v.2019.03.004

    WAN Hualiang, WANG Qizhi. Research on the fatigue behavior of additive manufacture materials of AlSi10Mg[J]. Structure & Environment Engineering, 2019, 46(3): 20-26.(in Chinese) doi: 10.19447/j.cnki.11-1773/v.2019.03.004
    [17] 刘建涛, 杜平安, 黄明镜, 等. 结构疲劳长裂纹扩展速率新模型研究[J]. 应用数学和力学, 2009, 30(5): 538-546 doi: 10.3879/j.issn.1000-0887.2009.05.004

    LIU Jiantao, DU Ping’an, HUANG Mingjing, et al. Research on new model of long fatigue crack propagation rates for structures[J]. Applied Mathematics and Mechanics, 2009, 30(5): 538-546.(in Chinese) doi: 10.3879/j.issn.1000-0887.2009.05.004
    [18] 彭梦瑶, 顾水涛, 周洋靖, 等. 基于LiToSim平台的疲劳寿命评估LtsFatigue软件开发及应用[J]. 应用数学和力学, 2022, 43(9): 976-986

    PENG Mengyao, GU Shuitao, ZHOU Yangjing, et al. Development and application of fatigue life evaluation software LtsFatigue based on LiToSim[J]. Applied Mathematics and Mechanics, 2022, 43(9): 976-986.(in Chinese)
    [19] 董彦民, 刘文珽, 杨超. 军用飞机结构耐久性设计的细节疲劳额定值方法[J]. 航空学报, 2010, 31(12): 2357-2364

    DONG Yanmin, LIU Wenting, YANG Chao. Military aircraft durability design method based on detail fatigue rating[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(12): 2357-2364.(in Chinese)
  • 加载中
图(5) / 表(7)
计量
  • 文章访问数:  659
  • HTML全文浏览量:  225
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2023-01-13
  • 网络出版日期:  2023-02-04
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回