留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低Weissenberg数黏弹性流体中单气泡上浮运动特性研究

张仕环 庞明军 郑智颖

张仕环, 庞明军, 郑智颖. 低Weissenberg数黏弹性流体中单气泡上浮运动特性研究[J]. 应用数学和力学, 2023, 44(6): 629-642. doi: 10.21656/1000-0887.430328
引用本文: 张仕环, 庞明军, 郑智颖. 低Weissenberg数黏弹性流体中单气泡上浮运动特性研究[J]. 应用数学和力学, 2023, 44(6): 629-642. doi: 10.21656/1000-0887.430328
ZHANG Shihuan, PANG Mingjun, ZHENG Zhiying. Study on Hydrodynamics Characteristics of a Single Bubble in Viscoelastic Fluid at Low Weissenberg Numbers[J]. Applied Mathematics and Mechanics, 2023, 44(6): 629-642. doi: 10.21656/1000-0887.430328
Citation: ZHANG Shihuan, PANG Mingjun, ZHENG Zhiying. Study on Hydrodynamics Characteristics of a Single Bubble in Viscoelastic Fluid at Low Weissenberg Numbers[J]. Applied Mathematics and Mechanics, 2023, 44(6): 629-642. doi: 10.21656/1000-0887.430328

低Weissenberg数黏弹性流体中单气泡上浮运动特性研究

doi: 10.21656/1000-0887.430328
基金项目: 

国家自然科学基金项目 51376026

国家自然科学基金项目 51806051

详细信息
    作者简介:

    张仕环(1999—),男,硕士生(E-mail: zhangshihuan99@foxmail.com)

    郑智颖(1988—),男,副研究员,硕士生导师(E-mail: zhengzhy@hit.edu.cn)

    通讯作者:

    庞明军(1976—),男,教授,硕士生导师(通讯作者. E-mail: pangmj@cczu.edu.cn)

  • 中图分类号: O35

Study on Hydrodynamics Characteristics of a Single Bubble in Viscoelastic Fluid at Low Weissenberg Numbers

  • 摘要: 使用VOF法数值研究了气泡在黏弹性流体中的上浮运动,黏弹性模型选用Oldroyd-B模型.在低Weissenberg数(Wi)下,研究了黏性力、松弛时间、表面张力和黏度比对气泡上浮运动的影响.结果表明,当黏性力和弹性力较大(如Ga=2,Wi≥0.5和β=0.2)时,气泡尾部会出现“尾缘尖”现象,“尾缘尖”现象随着弹性的增强和表面张力的减小变得明显;当弹性较弱(如Wi=0.1)时,“尾缘尖”现象消失,气泡呈为帽形;当表面张力较大(如Eo=1)时,气泡呈现为纵向拉长的椭圆形,尾部特征不明显;在黏弹性流体中,表面张力对气泡的影响与在黏性流体中的相似;气泡在上浮过程中,随形状的变化,表现出“持续加速到稳定”和“加速-减速-再加速到稳定”两种上浮形式,在黏弹性流体中,气泡的上浮速度高于在纯黏性流体中的上浮速度;气泡周围的弹性应力与流体的黏度和松弛时间有关,随着黏度的减小和松弛时间的增大,弹性应力作用范围变宽.
  • 图  1  计算模型

    Figure  1.  The computation model

    图  2  网格大小对气泡中心高度和上浮速度的影响

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  Effects of the grid size on the bubble center height and the center velocity

    图  3  时间步长对气泡中心高度和上浮速度的影响

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  Effects of the time step on the bubble center height and the center velocity

    图  4  气泡形状对比

    Figure  4.  Comparison of bubble shapes

    图  5  气泡上浮速度对比

    Figure  5.  Comparison of bubble center velocities

    图  6  β=0.2时,气泡形状随Ga数,Wi数和Eo数的变化

    Figure  6.  Bubble shapes against Ga, Wi and Eo numbers at β=0.2

    图  7  Eo=10时,气泡形状随βGa数和Wi数的变化

    Figure  7.  Bubble shapes against β, Ga and Wi numbers at Eo=10

    图  8  Wi=1和Ga=2时,聚合物分子对气泡变形的影响

    Figure  8.  Schematic of effects of polymer molecules on bubble deformation at Wi=1 and Ga=2

    图  9  Ga=4和β=0.2时,Wi数和Eo数对气泡上浮速度的影响

    Figure  9.  Effects of Wi and Eo numbers on the bubble rise velocity at Ga=4 and β=0.2

    图  10  Eo=10和β=0.2时,Ga数对气泡上浮速度的影响

    Figure  10.  Effects of the Ga number on the bubble rise velocity at Eo=10 and β=0.2

    图  11  Ga=2和Eo=10时,黏度比β对气泡上浮速度的影响

    Figure  11.  Effects of viscosity ratio β on the bubble rise velocity at Ga=2 and Eo=10

    图  12  Ga=4和β=0.2时,Eo数和Wi数对气泡尾流的影响

    Figure  12.  Effects of Eo and Wi numbers on the bubble wake at Ga=4 and β=0.2

    图  13  Eo=10和β=0.2时,Ga数和Wi数对气泡尾流的影响

    Figure  13.  Effects of Ga and Wi numbers on the bubble wake at Eo=10 and β=0.2

    图  14  β=0.2时,τyy分布云图

    Figure  14.  At β=0.2, contour plots of τyy

    表  1  计算工况

    Table  1.   Design of the computation case

    Wi β Ga=2 Ga=4 Ga=8 Ga=16
    Eo=1 Eo=10 Eo=100 Eo=1 Eo=10 Eo=100 Eo=1 Eo=10 Eo=100 Eo=1 Eo=10 Eo=100
    0.1 0.2
    0.5
    0.8
    0.5 0.2
    0.5
    0.8
    1 0.2
    0.5
    0.8
    下载: 导出CSV
  • [1] TSUJINO T, SHIMA A. The behaviour of gas bubbles in blood subjected to an oscillating pressure[J]. Journal of Biomechanics, 1980, 13(5): 407-416. doi: 10.1016/0021-9290(80)90034-2
    [2] YANG G Q, LUO X, LAU R, et al. Heat-transfer characteristics in slurry bubble columns at elevated pressures and temperatures[J]. Industrial & Engineering Chemistry Research, 2000, 39(7): 2568-2577.
    [3] CHHABRA R P. Bubbles, Drops, and Particles in Non-Newtonian Fluids[M]. CRC Press, 2006: 10-25.
    [4] SAFFMAN P G. On the rise of small air bubbles in water[J]. Journal of Fluid Mechanics, 1956, 1(3): 249-275. doi: 10.1017/S0022112056000159
    [5] 蔡子琦. 牛顿流体中气泡动力学行为的实验研究[D]. 博士学位论文. 北京: 北京化工大学, 2011.

    CAI Ziqi. Experimental study on bubble dynamic behavior in Newtonian fluid[D]. PhD Thesis. Beijing: Beijing University of Chemical Technology, 2011. (in Chinese)
    [6] WANCHOO R K, SHARMA S K, RAINA G K. Drag coefficient and velocity of rise of a single collapsing two-phase bubble[J]. AIChE Journal, 1997, 43(8): 1955-1963. doi: 10.1002/aic.690430805
    [7] MIYAHARA T, YAMANAKA S. Mechanics of motion and deformation of a single bubble rising through quiescent highly viscous Newtonian and non-Newtonian media[J]. Journal of Chemical Engineering of Japan, 1993, 26(3): 297-302. doi: 10.1252/jcej.26.297
    [8] SAITO T, SAKAKIBARA K, MIYAMOTO Y, et al. A study of surfactant effects on the liquid-phase motion around a zigzagging-ascent bubble using a recursive cross-correlation PIV[J]. Chemical Engineering Journal, 2010, 158(1): 39-50. doi: 10.1016/j.cej.2008.07.021
    [9] YAN X, ZHENG K, JIA Y, et al. Drag coefficient prediction of a single bubble rising in liquids[J]. Industrial & Engineering Chemistry Research, 2018, 57(15): 5385-5393.
    [10] HOQUE M M, MITRA S, EVANS G M, et al. Modulation of turbulent flow field in an oscillating grid system owing to single bubble rise[J]. Chemical Engineering Science, 2018, 185: 26-49. doi: 10.1016/j.ces.2018.03.039
    [11] 胡波, 庞明军. 特征时间对剪切稀化流体气泡上浮特性的影响[J]. 化工进展, 2020, 40(5): 2440-2451. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202105008.htm

    HU Bo, PANG Mingjun. Effect of characteristic time on bubble upwelling characteristics of shear thinning fluid[J]. Chemical Industry Progress, 2020, 40(5): 2440-2451. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202105008.htm
    [12] 孙涛, 庞明军, 费洋. 气泡间距对受污染球形气泡界面性质和尾流的影响[J]. 应用数学和力学, 2020, 41(10): 1157-1170. doi: 10.21656/1000-0887.410099

    SUN Tao, PANG Mingjun, FEI Yang. Influence of bubble spacing on interface properties and wake flow of polluted spherical bubbles[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1157-1170. (in Chinese) doi: 10.21656/1000-0887.410099
    [13] 庞明军, 牛瑞鹏, 陆敏杰. 壁面效应对剪切稀化流体内气泡上浮特性的影响[J]. 应用数学和力学, 2020, 41(2): 143-155. doi: 10.21656/1000-0887.400194

    PANG Mingjun, NIU Ruipeng, LU Minjie. Effect of wall effect on bubble buoyancy in shear thinning fluid[J]. Applied Mathematics and Mechanics, 2020, 41(2): 143-155. (in Chinese) doi: 10.21656/1000-0887.400194
    [14] PREMLATA A R, TRIPATHI M K, KARRI B, et al. Numerical and experimental investigations of an air bubble rising in a Carreau-Yasuda shear-thinning liquid[J]. Physics of Fluids, 2017, 29(3): 033103. doi: 10.1063/1.4979136
    [15] 陆敏杰, 庞明军. 静止幂律流体中气泡上浮运动特性的数值研究[J]. 工程热物理学报, 2018, 39(11): 2454-2462. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201811017.htm

    LU Minjie, PANG Mingjun. Numerical study of bubble upward motion in stationary power-law fluid[J]. Chinese Journal of Engineering Thermophysics, 2018, 39(11): 2454-2462. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201811017.htm
    [16] MAJUMDAR A, DAS P K. Rise of Taylor bubbles through power law fluids: analytical modelling and numerical simulation[J]. Chemical Engineering Science, 2019, 205: 83-93. doi: 10.1016/j.ces.2019.04.028
    [17] 孙涛, 庞明军, 陆敏杰, 等. 剪切稠化流体内气泡上浮运动特性[J]. 化学工程, 2019, 47(11): 56-61. doi: 10.3969/j.issn.1005-9954.2019.11.011

    SUN Tao, PANG Mingjun, LU Minjie, et al. Characteristics of bubble upward motion in shear thickened fluid[J]. Chemical Engineering, 2019, 47(11): 56-61. (in Chinese) doi: 10.3969/j.issn.1005-9954.2019.11.011
    [18] SOTO E, GOUJON C, ZENIT R, et al. A study of velocity discontinuity for single air bubbles rising in an associative polymer[J]. Physics of Fluids, 2006, 18(12): 121510. doi: 10.1063/1.2397011
    [19] SUN B, GUO Y, WANG Z, et al. Experimental study on the drag coefficient of single bubbles rising in static non-Newtonian fluids in wellbore[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 867-872. doi: 10.1016/j.jngse.2015.07.020
    [20] 徐双, 李少白, 范俊赓, 等. 粘弹性流体中气泡上升过程的轨迹分析[J]. 沈阳航空航天大学学报, 2016, 33(5): 88-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGX201605016.htm

    XU Shuang, LI Shaobai, FAN Jungeng, et al. Trajectory analysis of bubble rising process in viscoelastic fluid[J]. Journal of Shenyang University of Aeronautics and Astronautics, 2016, 33(5): 88-92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKGX201605016.htm
    [21] KORDORWU V. 粘弹性流体中上升CO2气泡动力学和传质的实验研究[D]. 硕士学位论文. 大连: 大连理工大学, 2021.

    KORDORWU V. Experimental study on dynamics and mass transfer of CO2 bubbles rising in viscoelastic fluids[D]. Master Thesis. Dalian: Dalian University of Technology, 2021. (in Chinese)
    [22] 白丽娜, 曹佰旭, 胡钊晨, 等. 黏弹性流体中单气泡上升速度的研究[J]. 高校化学工程学报, 2019, 33(5): 1064-1069. doi: 10.3969/j.issn.1003-9015.2019.05.005

    BAI Lina, CAO Baixu, HU Zhaochen, et al. Study on single bubble rising velocity in viscoelastic fluid[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(5): 1064-1069. (in Chinese) doi: 10.3969/j.issn.1003-9015.2019.05.005
    [23] ASTARITA G, APUZZO G. Motion of gas bubbles in non-Newtonian liquids[J]. AIChE Journal, 1965, 11(5): 815-820. doi: 10.1002/aic.690110514
    [24] HASSAGER O. Negative wake behind bubbles in non-Newtonian liquids[J]. Nature, 1979, 279(5712): 402-403. doi: 10.1038/279402a0
    [25] ZANA E, LEAL L G. The dynamics and dissolution of gas bubbles in a viscoelastic fluid[J]. International Journal of Multiphase Flow, 1978, 4(3): 237-262. doi: 10.1016/0301-9322(78)90001-0
    [26] SOUSA R G, NOGUEIRA S, PINTO A, et al. Flow in the negative wake of a Taylor bubble rising in viscoelastic carboxymethylcellulose solutions: particle image velocimetry measurements[J]. Journal of Fluid Mechanics, 2004, 511: 217-236. doi: 10.1017/S0022112004009644
    [27] KEMIHA M, FRANK X, PONCIN S, et al. Origin of the negative wake behind a bubble rising in non-Newtonian fluids[J]. Chemical Engineering Science, 2006, 61(12): 4041-4047. doi: 10.1016/j.ces.2006.01.051
    [28] YAMAGUCHI H, UENO Y. Deformation of a single rising bubble in non-Newtonian liquid[J]. Nihon Reoroji Gakkaishi, 2005, 33(1): 41-43. doi: 10.1678/rheology.33.41
    [29] SOTO E, GOUJON C, ZENIT R, et al. A study of velocity discontinuity for single air bubbles rising in an associative polymer[J]. Physics of Fluids, 2006, 18(12): 121510. doi: 10.1063/1.2397011
    [30] MIRZAAGHA S, PASQUINO R, IULIANO E, et al. The rising motion of spheres in structured fluids with yield stress[J]. Physics of Fluids, 2017, 29(9): 093101. doi: 10.1063/1.4998740
    [31] WAGNER A J, GIRAUD L, SCOTT C E. Simulation of a cusped bubble rising in a viscoelastic fluid with a new numerical method[J]. Computer Physics Communications, 2000, 129(1/3): 227-232.
    [32] PILLAPAKKAM S B, SINGH P, BLACKMORE D, et al. Transient and steady state of a rising bubble in a viscoelastic fluid[J]. Journal of Fluid Mechanics, 2007, 589: 215-252.
    [33] FRAGGEDAKIS D, PAVLIDIS M, DIMAKOPOULOS Y, et al. On the velocity discontinuity at a critical volume of a bubble rising in a viscoelastic fluid[J]. Journal of Fluid Mechanics, 2016, 789: 310-346.
    [34] FATTAL R, KUPFERMAN R. Constitutive laws for the matrix-logarithm of the conformation tensor[J]. Journal of Non-Newtonian Fluid Mechanics, 2004, 123(2/3): 281-285.
    [35] FATTAL R, KUPFERMAN R. Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 126(1): 23-37.
    [36] AFONSO A M, PINHO F T, ALVES M A. The kernel-conformation constitutive laws[J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 167: 30-37.
    [37] YUAN W, ZHANG M, KHOO B C, et al. Dynamics and deformation of a three-dimensional bubble rising in viscoelastic fluids[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 285: 104408.
    [38] OHTA M, FURUKAWA T, YOSHIDA Y, et al. A three-dimensional numerical study on the dynamics and deformation of a bubble rising in a hybrid Carreau and FENE-CR modeled polymeric liquid[J]. Journal of Non-Newtonian Fluid Mechanics, 2019, 265: 66-78.
    [39] WAGNER A J. Simulations of a rising drop in a non-linear viscoelastic fluid[J]. Progress in Computational Fluid Dynamics, an International Journal, 2005, 5(1/2): 20-26.
    [40] LARIMI M M, RAMIAR A. Two-dimensional bubble rising through quiescent and non-quiescent fluid: influence on heat transfer and flow behavior[J]. International Journal of Thermal Sciences, 2018, 131: 58-71.
    [41] SARKAR K, SCHOWALTER W R. Deformation of a two-dimensional viscoelastic drop at non-zero Reynolds number in time-periodic extensional flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2000, 95(2/3): 315-342.
    [42] YOUNGS D L. Time-Dependent Multi-Material Flow With Large Fluid Distortion[M]//MORTON K W, BAINES M J, ed. Numerical Methods for Fluid Dynamics. New York: Academic Press, 1982: 273-285.
    [43] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.
    [44] AMIRNIA S, DE BRUYN J R, BERGOUGNOU M A, et al. Continuous rise velocity of air bubbles in non-Newtonian biopolymer solutions[J]. Chemical Engineering Science, 2013, 94: 60-68.
    [45] 闫思娜, 罗兴锜, 冯建军, 等. 含气率对气液两相流离心泵性能的影响[J]. 水动力学研究与进展(A辑), 2019, 34(3): 353-360. https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201903011.htm

    YAN Sina, LUO Xingqi, FENG Jianjun, et al. Effect of gas content on performance of gas-liquid two-phase flow centrifugal pump[J]. Research and Progress in Hydrodynamics(Series A), 2019, 34(3): 353-360. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201903011.htm
    [46] 张泽斌, 李永, 陈荣尚, 等. 含气率对润滑油黏度的影响[J]. 河南科技大学学报(自然科学版), 2019, 40(2): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX201902006.htm

    ZHANG Zebin, LI Yong, CHEN Rongshang, et al. Effect of gas content on viscosity of lubricating oil[J]. Journal of Henan University of Science and Technology (Natural Science Edition), 2019, 40(2): 23-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX201902006.htm
    [47] NIETHAMMER M, BRENN G, MARSCHALL H, et al. An extended volume of fluid method and its application to single bubbles rising in a viscoelastic liquid[J]. Journal of Computational Physics, 2019, 387: 326-355.
    [48] BOTHE D, NIETHAMMER M, PILZ C, et al. On the molecular mechanism behind the bubble rise velocity jump discontinuity in viscoelastic liquids[J]. Journal of Non-Newtonian Fluid Mechanics, 2022, 302: 104748.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  390
  • HTML全文浏览量:  165
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-18
  • 修回日期:  2022-12-09
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回