留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义(3+1)维KdV方程的lump解、相互作用解和呼吸子解

于明惠 王云虎

于明惠, 王云虎. 广义(3+1)维KdV方程的lump解、相互作用解和呼吸子解[J]. 应用数学和力学, 2023, 44(8): 1007-1016. doi: 10.21656/1000-0887.430353
引用本文: 于明惠, 王云虎. 广义(3+1)维KdV方程的lump解、相互作用解和呼吸子解[J]. 应用数学和力学, 2023, 44(8): 1007-1016. doi: 10.21656/1000-0887.430353
YU Minghui, WANG Yunhu. Lump Solutions, Interaction Solutions and Breather Solutions of Generalized (3+1)-Dimensional KdV Equations[J]. Applied Mathematics and Mechanics, 2023, 44(8): 1007-1016. doi: 10.21656/1000-0887.430353
Citation: YU Minghui, WANG Yunhu. Lump Solutions, Interaction Solutions and Breather Solutions of Generalized (3+1)-Dimensional KdV Equations[J]. Applied Mathematics and Mechanics, 2023, 44(8): 1007-1016. doi: 10.21656/1000-0887.430353

广义(3+1)维KdV方程的lump解、相互作用解和呼吸子解

doi: 10.21656/1000-0887.430353
基金项目: 

国家自然科学基金项目 12275172

国家自然科学基金项目 11905124

详细信息
    作者简介:

    于明惠(1997—),女,硕士生(E-mail: yumingh97@163.com)

    通讯作者:

    王云虎(1982—),男,副教授(通讯作者. E-mail: yhwang@ shmtu.edu.cn

  • 中图分类号: O175.29

Lump Solutions, Interaction Solutions and Breather Solutions of Generalized (3+1)-Dimensional KdV Equations

  • 摘要: 基于广义(3+1)维KdV方程的双线性形式,得到了方程的lump解、相互作用解及呼吸子解.证明了lump解在空间各个方向上都是有理局域的,并在lump波与线孤子的相互作用过程中观察到了“聚变”和“裂变”现象,最后得到了方程的呼吸子解.
  • 图  1  Lump解(18)的三维图和密度图(y=0, t=0)

    Figure  1.  The 3D plot and the density plot with lump solutions (18)(y=0, t=0)

    图  2  取参数α=γ=δ=a5=a6=1,β=-1,a1=a2=a7=a9=2,a3=5,a10=18时,lump解(13)的三维图和密度图(x=0, t=0)

    Figure  2.  The 3D plot and the density plot with lump solutions (13) under parameters selected as α=γ=δ=a5=a6=1, β=-1, a1=a2=a7=a9=2, a3=5, a10=18 (x=0, t=0)

    图  3  Lump波与线孤子产生的“聚变”现象

    Figure  3.  Fusion phenomena between the lump wave and the one-stripe soliton

    图  4  线孤子产生的“裂变”现象

    Figure  4.  Fission phenomena produced by the one-stripe soliton

    图  5  解(30)的三维图(x-y-v),x曲线图和密度图,参数取值为α=γ=c5=c7=1, β=-2, c3=0, c2=k1=k3=3, k2=2

    Figure  5.  The 3D plot (x-y-v), the x-curve plot and the density plot of solution(30) with α=γ=c5=c7=1, β=-2, c3=0, c2=k1=k3=3, k2=2

    图  6  解(30)的三维图(x-z-v), z曲线图和密度图,参数取值为α=γ=c2=c5=c7=1, β=-2, c3=0, k1=k2=k3=2

    Figure  6.  The 3D plot (x-z-v), the z-curve plot and the density plot of solution(30) with α=γ=c2=c5=c7=1, β=-2, c3=0, k1=k2=k3=2

    图  7  解(30)的三维图(y-z-v), y曲线图和密度图,参数取值为α=γ=c5=c7=1, β=-2, c3=0, c2=k1=k3=3, k2=2

    Figure  7.  The 3D plot (y-z-v), the y-curve plot and the density plot of solution(30) with α=γ=c5=c7=1, β=-2, c3=0, c2=k1=k3=3, k2=2

  • [1] ABLOWITZ M J, CLARKSON P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering[M]. Cambridge: Cambridge University Press, 1991.
    [2] GUO B L. Nonlinear Evolution Equations[M]. Shanghai: Shanghai Science and Technology Education Press, 2004.
    [3] CRIGHTON D G. Application of KdV[J]. Acta Applicandae Mathematicae, 1995, 39: 39-67. doi: 10.1007/BF00994625
    [4] MINZONI A A, SMYTH N F. Evolution of lump solutions for the KP equation[J]. Wave Motion, 1996, 24(3): 291-305. doi: 10.1016/S0165-2125(96)00023-6
    [5] 张诗洁, 套格图桑. (3+1)维变系数Kudryashov-Sinelshchikov(K-S)方程的同宿呼吸波解和高阶怪波解[J]. 应用数学和力学, 2021, 42(8): 852-858. doi: 10.21656/1000-0887.410387

    ZHANG Shijie, TAOGETUSANG. Homoclinic breathing wave solutions and high-order rogue wave solutions of (3+1)-dimensional variable coefficient Kudryashov-Sinelshchikov equations[J]. Applied Mathematics and Mechanics, 2021, 42(8): 852-858. (in Chinese)) doi: 10.21656/1000-0887.410387
    [6] 刘静静, 孙峪怀. 一类分数阶修正的不稳定Schrödinger方程的新精确解[J]. 应用数学和力学, 2022, 43(10): 1185-1194. doi: 10.21656/1000-0887.420228

    LIU Jingjing, SUN Yuhuai. New exact solutions for a class of fractionally modified unstable Schrödinger equation[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1185-1194. (in Chinese)) doi: 10.21656/1000-0887.420228
    [7] 郭鹏, 唐荣安, 孙小伟, 等. 非线性弹性杆波动方程的显式精确解[J]. 应用数学和力学, 2022, 43(8): 869-876. 非线性弹性杆波动方程的显式精确解

    GUO Peng, TANG Rongan, SUN Xiaowei, et al. Explicit exact solutions to the wave equation for nonlinear elastic rods[J]. Applied Mathematics and Mechanics, 2022, 43(8): 869-876. (in Chinese)) 非线性弹性杆波动方程的显式精确解
    [8] MIURA M R. Bäcklund Transformation[M]. New York: Springer, 1978.
    [9] MATVEEV V B, SALLE M A. Darboux Transformations and Solitons[M]. Berlin: Springer, 1991.
    [10] HIROTA R. The Direct Method in Soliton Theory[M]. New York: Cambridge University Press, 2004.
    [11] MA W X. Lump solutions to the Kadomtsev-Petviashvili equation[J]. Physics Letters A, 2015, 379(36): 1975-1978. doi: 10.1016/j.physleta.2015.06.061
    [12] ZHANG X E, CHEN Y. Rogue wave and a pair of resonance stripe solitons to a reduced generalized (3+1)-dimensional Jimbo-Miwa equation[J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 52: 24-31. doi: 10.1016/j.cnsns.2017.03.021
    [13] ZHANG X E, CHEN Y, TANG X Y. Rogue wave and a pair of resonance stripe solitons to KP equation[J]. Computers and Mathematics With Applications, 2018, 76(8): 1938-1949. doi: 10.1016/j.camwa.2018.07.040
    [14] REN B, MA W X, YU J. Characteristics and interactions of solitary and lump waves of a (2+1)-dimensional coupled nonlinear partial differential equation[J]. Nonlinear Dynamics, 2019, 96(1): 717-727. doi: 10.1007/s11071-019-04816-x
    [15] SHI K Z, SHEN S F, REN B, et al. Dynamics of mixed lump-soliton for an extended (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation[J]. Communications in Theoretical Physics, 2022, 74(3): 035001. doi: 10.1088/1572-9494/ac53a1
    [16] ZHOU Y, MANUKUREB S, MA W X. Lump and lump-soliton solutions to the Hirota-Satsuma-Ito equation[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 68: 56-62. doi: 10.1016/j.cnsns.2018.07.038
    [17] SUN Y L, MA W X, YU J P, et al. Lump and interaction solutions of nonlinear partial differential equations[J]. Modern Physics Letters B, 2019, 33(11): 1950133. doi: 10.1142/S0217984919501331
    [18] WANG H. Lump and interaction solutions to the (2+1)-dimensional Burgers equation[J]. Applied Mathematics Letters, 2018, 85: 27-37. doi: 10.1016/j.aml.2018.05.010
    [19] REN B, MA W X, YU J P. Rational solutions and their interaction solutions of the (2+1)-dimensional modified dispersive water wave equation[J]. Computers and Mathematics With Applications, 2019, 77(8): 2086-2095. doi: 10.1016/j.camwa.2018.12.010
    [20] CHEN L, CHEN J C, CHEN Q Y. Mixed lump-soliton solutions to the two-dimensional Toda lattice equation via symbolic computation[J]. Nonlinear Dynamics, 2019, 96(2): 1531-1539. doi: 10.1007/s11071-019-04869-y
    [21] YAN X W, TIAN S F, DONG M J, et al. Dynamics of lump solutions, lump-kink solutions and periodic lump solutions in a (3+1)-dimensional generalized Jimbo-Miwa equation[J]. Waves in Random and Complex Media, 2021, 31(2): 293-304. doi: 10.1080/17455030.2019.1582823
    [22] GUO F, LIN J. Lump, mixed lump-soliton, and periodic lump solutions of a (2+1)-dimensional extended higher-order Broer-Kaup system[J]. Modern Physics Letters B, 2020, 34(33): 2050384. doi: 10.1142/S0217984920503844
    [23] ZHANG H Y, ZHANG Y F. Rational solutions and their interaction solutions for the (2+1)-dimensional dispersive long wave equation[J]. Physica Scripta, 2020, 95(4): 045204. doi: 10.1088/1402-4896/ab4eb3
    [24] WANG M, TIAN B, SUN Y, et al. Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3+1)-dimensional nonlinear wave equation for a liquid with gas bubbles[J]. Computers and Mathematics With Applications, 2020, 79(3): 576-587. doi: 10.1016/j.camwa.2019.07.006
    [25] LÜ X, CHEN S J. Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types[J]. Nonlinear Dynamics, 2021, 103: 947-977. doi: 10.1007/s11071-020-06068-6
    [26] GHANBARI B. Employing Hirota's bilinear form to find novel lump waves solutions to an important nonlinear model in fluid mechanics[J]. Results in Physics, 2021, 29: 104689. doi: 10.1016/j.rinp.2021.104689
    [27] MANAFIAN J, LAKESTANI M. Interaction among a lump, periodic waves, and kink solutions to the fractional generalized CBS-BK equation[J]. Mathematical Methods in the Applied Sciences, 2021, 44(1): 1052-1070. doi: 10.1002/mma.6811
    [28] WANG Y H. Nonautonomous lump solutions for a variable-coefficient Kadomtsev-Petviashvili equation[J]. Applied Mathematics Letters, 2021, 119: 107201. doi: 10.1016/j.aml.2021.107201
    [29] DONG J J, LI B, YUEN M W. General high-order breather solutions, lump solutions and mixed solutions in the (2+1)-solutions bidirectional Sawada-Kotera equation[J]. Journal of Applied Analysis and Computation, 2021, 11(1): 271-286.
    [30] YUSUF A, SULAIMAN T A, HINCAL E, et al. Lump, its interaction phenomena and conservation laws to a nonlinear mathematical model[J]. Journal of Ocean Engineering and Science, 2022, 7(4): 363-371. doi: 10.1016/j.joes.2021.09.006
    [31] HAN P F, TAOGESTUSANG. Lump-type, breather and interaction solutions to the (3+1)-dimensional generalized KdV-type equation[J]. Modern Physics Letters B, 2020, 34(29): 2050329. doi: 10.1142/S0217984920503297
    [32] HAN P F, ZHANG Y. Linear superposition formula of solutions for the extended (3+1)-dimensional shallow water wave equation[J]. Nonlinear Dynamics, 2022, 109(2): 1019-1032. doi: 10.1007/s11071-022-07468-6
    [33] YIN Y H, MA W X, LIU J G, et al. Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction[J]. Computational and Applied Mathematics, 2018, 76(6): 1275-1283.
    [34] WAZWAZ A M. Two new Painlevé-integrable (2+1) and (3+1)-dimensional KdV equations with constant and time-dependent coefficients[J]. Nuclear Physics B, 2020, 954: 115009. doi: 10.1016/j.nuclphysb.2020.115009
    [35] BOITI M, LEON J, MANNA M, et al. On the spectral transform of Korteweg-de Vries equation in two spatial dimension[J]. Inverse Problems, 1986, 2(3): 271-279. doi: 10.1088/0266-5611/2/3/005
    [36] NAKAMURA Y, TSUKABAYASHI I. Modified Korteweg-de Vries ion-acoustic solitons in a plasma[J]. Journal of Plasma Physics, 1985, 34(3): 401-415. doi: 10.1017/S0022377800002968
    [37] WU H L, CHEN Q Y, SONG J F. Bäcklund transformation, residual symmetry and exact interaction solutions of an extended (2+1)-dimensional Korteweg-de Vries equation[J]. Applied Mathematics Letters, 2022, 124: 107640. doi: 10.1016/j.aml.2021.107640
    [38] YAO Z G, XIE H Y, JIE H. Mixed rational lump-solitary wave solutions to an extended (2+1)-dimensional KdV Equation[J]. Advances in Mathematical Physics, 2021, 2021: 1-9.
    [39] WAZWAZ A M. Single and multiple-soliton solutions for the (2+1)-dimensional KdV equation[J]. Applied Mathematics and Computation, 2008, 204(1): 20-26. doi: 10.1016/j.amc.2008.05.126
    [40] KORTEWEG D J, DE VRIES G. On the change of form of long waves advancing in a rectangualr canal, and on a new type of long stationary waves[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1895, 39(240): 422-443. doi: 10.1080/14786449508620739
    [41] CHENG C D, TIAN B, ZHANG C R, et al. Bilinear form, soliton, breather, hybrid and periodic-wave solutions for a (3+1)-dimensional Korteweg-de Vries equation in a fluid[J]. Nonlinear Dynamics, 2021, 105(3): 2525-2538. doi: 10.1007/s11071-021-06540-x
    [42] SHEN Y, TIAN B, LIU S H. Solitonic fusion and fission for a (3+1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves[J]. Physics Letters A, 2021, 405: 127429. doi: 10.1016/j.physleta.2021.127429
    [43] LIU W, ZHENG X X, WANG C, et al. Fission and fusion collision of high-order lumps and solitons in a (3+1)-dimensional nonlinear evolution equation[J]. Nonlinear Dynamics, 2019, 96(4): 2463-2473. doi: 10.1007/s11071-019-04935-5
    [44] LIU C F, DAI Z D. Exact periodic solitary wave and double periodic wave solutions for the (2+1)-dimensional Korteweg-de Vries equation[J]. Zeitschrift für Naturforschung A, 2009, 64(9/10): 609-614.
    [45] ZHANG D J. Notes on solutions in Wronskian form to soliton equations: Korteweg-de Vries-type[R/OL].[2022-12-18]. https://arxiv.org/pdf/nlin/0603008.pdf.
    [46] JAWORSKI M. Breather-like solutions to the Korteweg-de Vries equation[J]. Physics Letters A, 1984, 104(5): 245-247. doi: 10.1016/0375-9601(84)90060-4
    [47] LIU S Z, ZHANG D J. General description on extended homoclinic orbit solutions of the KdV-type bilinear equations[J]. Modern Physics Letters B, 2021, 35(5): 2150092. doi: 10.1142/S0217984921500925
  • 加载中
图(7)
计量
  • 文章访问数:  685
  • HTML全文浏览量:  188
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-04
  • 修回日期:  2022-12-18
  • 刊出日期:  2023-08-01

目录

    /

    返回文章
    返回