留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于B样条物质点法的溃坝流模拟研究

徐云卿 周晓敏 赵世一 徐聖飞 孙政

徐云卿, 周晓敏, 赵世一, 徐聖飞, 孙政. 基于B样条物质点法的溃坝流模拟研究[J]. 应用数学和力学, 2023, 44(8): 921-930. doi: 10.21656/1000-0887.430363
引用本文: 徐云卿, 周晓敏, 赵世一, 徐聖飞, 孙政. 基于B样条物质点法的溃坝流模拟研究[J]. 应用数学和力学, 2023, 44(8): 921-930. doi: 10.21656/1000-0887.430363
XU Yunqing, ZHOU Xiaomin, ZHAO Shiyi, XU Shengfei, SUN Zheng. Simulation Study on Dam Break Flow Based on the B-Spline Material Point Method[J]. Applied Mathematics and Mechanics, 2023, 44(8): 921-930. doi: 10.21656/1000-0887.430363
Citation: XU Yunqing, ZHOU Xiaomin, ZHAO Shiyi, XU Shengfei, SUN Zheng. Simulation Study on Dam Break Flow Based on the B-Spline Material Point Method[J]. Applied Mathematics and Mechanics, 2023, 44(8): 921-930. doi: 10.21656/1000-0887.430363

基于B样条物质点法的溃坝流模拟研究

doi: 10.21656/1000-0887.430363
基金项目: 

国家自然科学基金项目 12262013

国家自然科学基金项目 11902127

江西省主要学科学术和技术带头人-青年项目 20225BCJ23022

国家级大学生创新创业训练项目 202010407006

江西省大学生创新创业训练项目 S202210407026

详细信息
    作者简介:

    徐云卿(1999—),男,硕士(E-mail: xuyunqing@mail.jxust.edu.cn)

    通讯作者:

    孙政(1986—),男,副教授,博士,硕士生导师(通讯作者. E-mail: sunzheng@jxust.edu.cn)

  • 中图分类号: O35

Simulation Study on Dam Break Flow Based on the B-Spline Material Point Method

  • 摘要: 溃坝流是水利工程中常见的一种自由表面流动问题,准确模拟溃坝流问题具有重要的工程意义. B样条物质点法(BSMPM)作为一种物质点法(material point method,MPM)的改进算法,其提高了物质点的计算精度和收敛性,且在自由表面流动问题中有独特的算法优势. 基于B样条物质点法,通过引入人工状态方程,发展了一种弱可压缩B样条物质点法(WC-BSMPM);开展溃坝流问题的模拟研究,分析B样条插值基函数阶数对模拟结果的影响. 结果表明:模拟所得流体波前位置、波前流速及给定位置处的高程变化与已有实验结果吻合较好;同时,随着B样条基函数阶数的增加,模拟结果与试验结果吻合度逐渐提高. 随着基函数阶数的增加,计算耗时呈约1.5倍增长;不同阶次B样条物质点法的计算耗时随背景网格尺寸的增长率基本一致,约呈线性增长. 验证了弱可压缩B样条物质点法模拟溃坝流问题的有效性,为模拟溃坝流问题提供了一种新的思路和方法.
  • 图  1  Cox-de Boor递归示意图

    Figure  1.  Schematic diagram of the Cox-de Boor recursion

    图  2  网格空间示意图

    Figure  2.  Illustration of grid spaces

    图  3  溃坝流问题示意图

    Figure  3.  Illustration of the dam break flow problem

    图  4  溃坝流体波前位置随时间的变化

    Figure  4.  Variation of the dam-break fluid wavefront position with time

    图  5  初始水位高度h0=0.3 m,(a)、(b)、(c)和(d)分别为给定位置h1h2h3h4水位高程随时间的变化

    Figure  5.  Initial water level height h0=0.3 m, (a), (b), (c) and (d) denoting the changes of the water level elevation at given positions h1, h2, h3 and h4 with time, respectively

    图  6  初始水位高度h0=0.3 m,(a)、(b)、(c)和(d)分别为BSMPM 1阶、2阶、3阶的模拟结果和实验结果在t=0.32 s(T*=1.83),t=0.41 s(T*=2.34),t=0.46 s(T*=2.63)下的速度云图

    Figure  6.  Initial water level height h0=0.3 m, (a), (b), (c) and (d) denoting the velocity profiles of the BSMPM 1st-order, 2nd-order and 3rd-order simulation results and experimental results at t=0.32 s(T*=1.83), t=0.41 s(T*=2.34), t=0.46 s(T*=2.63), respectively

    图  7  单步CPU计算耗时随网格尺寸和基函数阶数的变化

    Figure  7.  Variation of the single-step CPU computation time with the grid size and the order of basis functions

    表  1  不同网格尺寸下,1阶、2阶和3阶基函数下B样条物质点法的求解耗时

    Table  1.   Solution time costs of the BSMPM for the 1st-order, 2nd-order and 3rd-order basis functions with different grid sizes

    grid size Δ/m CPU time per step tCPU/ms
    1st order 2nd order 3rd order
    0.01 15.802 24.296 36.592
    0.02 3.590 5.890 9.032
    0.04 0.949 1.636 2.070
    下载: 导出CSV
  • [1] 谢任之. 溃坝水力学[M]. 济南: 山东科学技术出版社, 1989.

    XIE Renzhi. Dam Failure Hydraulics[M]. Jinan: Shandong Science and Technology Press, 1989. (in Chinese)
    [2] RITTER A. Die fortpflanzung de wasserwellen[J]. Zeitschrift Verein Deutscher Ingenieure, 1892, 36 (33): 947-954.
    [3] IKNI T, BERREKSI A, BELHOCINE M. Numerical study of shallow-water equations using three explicit schemes-application to dam break flood wave[J]. International Journal of Hydrology Science and Technology, 2021, 12 (2): 101-115. doi: 10.1504/IJHST.2021.116662
    [4] 郑素佩, 李霄, 赵青宇, 等. 求解二维浅水波方程的旋转混合格式[J]. 应用数学和力学, 2022, 43 (2): 176-186. doi: 10.21656/1000-0887.420063

    ZHENG Supei, LI Xiao, ZHAO Qingyu, et al. A rotated mixed scheme for solving 2D shallow water equations[J]. Applied Mathematics and Mechanics, 2022, 43 (2): 176-186. (in Chinese) doi: 10.21656/1000-0887.420063
    [5] BUKREEV V, GUSEV A, MALYSHEVA A, et al. Experimental verification of the gas-hydraulic analogy with reference to the dam-break problem[J]. Fluid Dynamics, 2004, 39 (5): 801-809. doi: 10.1007/s10697-005-0014-7
    [6] LOBOVSKÝ L, BOTIA-VERA E, CASTELLANA F, et al. Experimental investigation of dynamic pressure loads during dam break[J]. Journal of Fluids and Structures, 2014, 48: 407-434. doi: 10.1016/j.jfluidstructs.2014.03.009
    [7] 鲍远林, 陈秀荣, 程冰, 等. 有限体积KFVS方法在二维溃坝中的应用[J]. 应用数学, 2004, 17 (S1): 156-159. https://www.cnki.com.cn/Article/CJFDTOTAL-YISU2004S1037.htm

    BAO Yuanlin, CHEN Xiurong, CHENG Bing, et al. The application of KFVS finite volume method in the two-dimensional dam breaking[J]. Mathematica Applicata, 2004, 17 (S1): 156-159. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YISU2004S1037.htm
    [8] HAN K Y, LEE J T, PARK J H. Flood inundation analysis resulting from Levee-break[J]. Journal of Hydraulic Research, 1998, 36 (5): 747-759. doi: 10.1080/00221689809498600
    [9] 胡四一, 谭维炎. 用TVD格式预测溃坝洪水波的演进[J]. 水利学报, 1989(7): 1-11. doi: 10.13243/j.cnki.slxb.1989.07.001

    HU Siyi, TAN Weiyan. Prediction of dam-break flood wave evolution with TVD scheme[J]. Journal of Hydraulic Engineering, 1989(7): 1-11. (in Chinese) doi: 10.13243/j.cnki.slxb.1989.07.001
    [10] 王大国, THAM Leslie George, 水庆象, 等. 基于CBOS有限元溃坝流数值模型[J]. 工程力学, 2013, 30 (3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201303066.htm

    WANG Daguo, THAM Leslie George, SHUI Qingxiang, et al. Numerical model of dam breaking flow with CBOS finite element method[J]. Engineering Mechanics, 2013, 30 (3): 451-458. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201303066.htm
    [11] 张建伟, 杜宇, 陈海舟. 溃坝水流冲击水垫塘的SPH模拟[J]. 水电能源科学, 2021, 39 (3): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY202103011.htm

    ZHANG Jianwei, DU Yu, CHEN Haizhou. SPH simulation of dam-break flow impacting plunge pool[J]. Water Resources and Power, 2021, 39 (3): 41-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY202103011.htm
    [12] SULSKY D, CHEN Z, SCHREYR H. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118 (1): 179-196.
    [13] MA S, ZHANG X, QIU X. Comparison study of MPM and SPH in modeling hypervelocity impact problems[J]. International Journal of Impact Engineering, 2009, 36 (2): 272-282.
    [14] SUN Z, LI H, GAN Y, et al. Material point method and smoothed particle hydrodynamics simulations of fluid flow problems: a comparative study[J]. Progress in Computational Fluid Dynamics, 2018, 18: 1-18.
    [15] 王宇新, 李晓杰, 王小红, 等. 炸药爆轰物质点法三维数值模拟[J]. 应用数学和力学, 2015, 36 (2): 198-206. doi: 10.3879/j.issn.1000-0887.2015.02.009

    WANG Yuxin, LI Xiaojie, WANG Xiaohong, et al. 3D simulation of explosive detonation with the material point method[J]. Applied Mathematics and Mechanics, 2015, 36 (2): 198-206. (in Chinese) doi: 10.3879/j.issn.1000-0887.2015.02.009
    [16] 张雄, 刘岩, 张帆, 等. 极端变形问题的物质点法研究进展[J]. 计算力学学报, 2017, 34 (1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201701001.htm

    ZHANG Xiong, LIU Yan, ZHANG Fan, et al. Recent progress of material point method for extreme deformation problems[J]. Chinese Journal of Computational Mechanics, 2017, 34 (1): 1-16. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201701001.htm
    [17] 马上, 张雄, 邱信明. 超高速碰撞问题的三维物质点法[J]. 爆炸与冲击, 2006, 26 (3): 273-278. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200603013.htm

    MA Shang, ZHANG Xiong, QIU Xinming. Three-dimensional matter point method for hypervelocity impact[J]. Explosion and Shock Waves, 2006, 26 (3): 273-278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200603013.htm
    [18] 郑勇刚, 顾元宪, 陈震. 薄膜破坏过程数值模拟的MPM方法[J]. 力学学报, 2006, 38 (3): 347-355. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200603009.htm

    ZHENG Yonggang, GU Yuanxian, CHEN Zhen. Numerical simulation of thin film failure with MPM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38 (3): 347-355. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200603009.htm
    [19] 周晓敏, 孙政. 非Newton流体的物质点法模拟研究[J]. 应用数学和力学, 2019, 40 (10): 1135-1146. doi: 10.21656/1000-0887.390349

    ZHOU Xiaomin, SUN Zheng. Simulation of non-Newtonian fluid flows with the material point method[J]. Applied Mathematics and Mechanics, 2019, 40 (10): 1135-1146. (in Chinese) doi: 10.21656/1000-0887.390349
    [20] GAN Y, SUN Z, CHEN Z, et al. Enhancement of the material point method using B-spline basis functions[J]. International Journal for Numerical Methods in Engineering, 2018, 113 (3): 411-431
    [21] TIELEN R, WOBBES E, MÖLLER M, et al. A high order material point method[J]. Procedia Engineering, 2017, 175: 265-272.
    [22] SONG Y, LIU Y, ZHANG X. A transport point method for complex flow problems with free surface[J]. Computational Particle Mechanics, 2020, 7 (2): 377-391.
    [23] ZHOU X, SUN Z. Numerical investigation of non-Newtonian power law flows using B-spline material point method[J]. Journal of Non-Newtonian Fluid Mechanics, 2021, 298: 104678.
    [24] SUN Z, HUANG Z, ZHOU X. Benchmarking the material point method for interaction problems between the free surface flow and elastic structure[J]. Progress in Computational and Fluid Dynamics, 2019, 19 (1): 1-11.
    [25] DE BOOR C. A Practical Guide to Spline[M]. New York: Springer, 1978.
    [26] 孙政, 周晓敏. 物质点法改进算法及其工程应用[M]. 长沙: 中南大学出版社, 2021.

    SUN Zheng, ZHOU Xiaomin. Improved Material Point Method and Its Engineering Application[M]. Changsha: Central South University Press, 2021. (in Chinese)
    [27] 周光坰, 严宗毅, 许世雄, 等. 流体力学(上)[M]. 北京: 高等教育出版社, 2001.

    ZHOU Guangjiong, YAN Zongyi, XU Shixiong, et al. The Fluid Mechanics(I)[M]. Beijing: Higher Education Press, 2001. (in Chinese)
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  405
  • HTML全文浏览量:  137
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-10
  • 修回日期:  2023-03-20
  • 刊出日期:  2023-08-01

目录

    /

    返回文章
    返回