留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模态自适应的大变形多体系统动力学分析

刘泽斌 李海艳 詹宏远 梁桂铭

刘泽斌, 李海艳, 詹宏远, 梁桂铭. 基于模态自适应的大变形多体系统动力学分析[J]. 应用数学和力学, 2023, 44(11): 1366-1377. doi: 10.21656/1000-0887.430368
引用本文: 刘泽斌, 李海艳, 詹宏远, 梁桂铭. 基于模态自适应的大变形多体系统动力学分析[J]. 应用数学和力学, 2023, 44(11): 1366-1377. doi: 10.21656/1000-0887.430368
LIU Zebin, LI Haiyan, ZHAN Hongyuan, LIANG Guiming. Dynamics Analysis of Large-Deformation Flexible Multibody Systems Based on the Adaptive Modal Selection Method[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1366-1377. doi: 10.21656/1000-0887.430368
Citation: LIU Zebin, LI Haiyan, ZHAN Hongyuan, LIANG Guiming. Dynamics Analysis of Large-Deformation Flexible Multibody Systems Based on the Adaptive Modal Selection Method[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1366-1377. doi: 10.21656/1000-0887.430368

基于模态自适应的大变形多体系统动力学分析

doi: 10.21656/1000-0887.430368
基金项目: 

国家自然科学基金项目 51375297

详细信息
    作者简介:

    刘泽斌(1997—),男,硕士生(E-mail: 19516931@qq.com)

    通讯作者:

    李海艳(1974—),女,副教授(通讯作者. E-mail: cathylhy@gdut.edu.cn)

  • 中图分类号: TP182;TH113.2+2;O313.7

Dynamics Analysis of Large-Deformation Flexible Multibody Systems Based on the Adaptive Modal Selection Method

  • 摘要: 柔性大变形系统在进行模态降阶时,若模态选取不当,会影响求解精度甚至导致求解结果发散.对此,提出了基于绝对节点坐标法(ANCF)的柔性大变形系统模态自适应选择方法.通过ANCF梁单元建立系统的动力学模型;利用全模态稀疏表示内部区域的坐标;根据Latin超立方抽样构建采样矩阵,作用于动力学方程,以减少方程的数量;以采样后的动力学方程作为约束,构造模态坐标范数优化问题;求解优化问题可以得到具有重大贡献的模态.通过两个实例表明:数值计算结果与常用方法的结果高度吻合并且求解效率显著提升.
  • 图  1  梁部件k的初始构型和当前构型

    Figure  1.  Undeformed and deformed configurations of beam component k

    图  2  梁单元i的初始构型和当前构型

    Figure  2.  Undeformed and deformed configurations of beam element i

    图  3  GGN算法流程图

    Figure  3.  The flowchart for the GGN algorithm

    图  4  自由落体单摆

    Figure  4.  The free falling pendulum

    图  5  不同时刻柔性单摆构型

    Figure  5.  Configurations of the free falling pendulum at different moments

    图  6  单摆自由端的垂直位置

    Figure  6.  Vertical positions of the free end of the pendulum

    图  7  提出的方法在不同时间步长下对模态的自适应选择(单摆)

    Figure  7.  Adaptive selection of modal coordinates with the proposed method for different time steps(pendulum)

    图  8  全局坐标系下的3-RRR并联机器人示意图

    Figure  8.  Geometry and global coordinates of the 3-RRR mechanism

    图  9  在不同时刻的机构构型

    Figure  9.  Configurations of the mechanism at different moments

    图  10  移动平台在xy方向上的位移以及转角θ

    Figure  10.  Rotation angle θ and displacements in directions x and y of the platform

    图  11  提出的方法在不同时间步长下对模态的自适应选择

    Figure  11.  Adaptive selection of modal coordinates with the proposed method for different time steps

    表  1  单摆的几何与材料参数

    Table  1.   Geometry parameters and material parameters of the pendulum

    parameter value
    length l/m 1
    square sectional area A/m2 4×10-4
    Young’s modulus E/Pa 7×105
    density ρ/(kg/m3) 7.2×103
    moment of inertia I/m4 1.333×10-8
    下载: 导出CSV

    表  2  单摆传统ANCF和所提出方法的计算效率(单位: s)

    Table  2.   Computation efficiency of the ANCF and the proposed method for pendulums (unit: s)

    model matrix operation updated Jacobian matrix, stiffness matrix and residue etc total time
    ANCF 176.411 598.334 787.071
    proposed 118.341 412.514 531.855
    下载: 导出CSV

    表  3  机构的几何与材料参数

    Table  3.   Geometry parameters and material parameters of the mechanism

    material parameter driving link passive link member length l/m
    thickness T/m 0.01 0.005 driving link 0.245
    width W/m 0.03 0.01 passive link 0.242
    Young’s modulus E/Pa 2.01×1011 7×108 moving stage 0.112
    density ρ/(kg/m3) 2.7×103 2.7×103 fixed stage 0.400
    下载: 导出CSV

    表  4  传统ANCF和所提出方法的计算效率(单位: s)

    Table  4.   Computation efficiency of the ANCF and the proposed method (unit: s)

    model matrix operation updated Jacobian matrix, stiffness matrix and residue etc total time
    ANCF 566.283 6 766.148 1 390.966
    proposed 184.131 223.639 421.281
    下载: 导出CSV
  • [1] GUYAN R J. Reduction of stiffness and mass matrices[J]. AIAA Journal, 1965, 3(2): 380. doi: 10.2514/3.2874
    [2] HURTY W C. Dynamic analysis of structural systems using component modes[J]. AIAA Journal, 1965, 3(4): 255-282.
    [3] WILLIAM F. Numerical Linear Algebra With Applications[M]. Academic Press, 2013.
    [4] KERSCHENG, GOLINVAL J C, VAKAKIS A, et al. The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview[J]. Nonlinear Dynamics, 2005, 41(1): 147-169.
    [5] RAMA R R, SKATULLA S. Towards real-time modelling of passive and active behaviour of the human heart using PODI-based model reduction[J]. Computers and Structures, 2020, 232: 105897. doi: 10.1016/j.compstruc.2018.01.002
    [6] CRAIG JR R R. Coupling of substructures for dynamic analyses: an overview[C]//41st Structures, Structural Dynamics, and Materials Conference and Exhibit. Atlanta, GA, 2000.
    [7] AARTS R G K M, JONKER J B. Dynamic simulation of planar flexible link manipulators using adaptive modal integration[J]. Multibody System Dynamics, 2002, 7(1): 31-50. doi: 10.1023/A:1015271000518
    [8] BRÜLS O, DUYSINX P, GOLINVAL J C. The global modal parameterization for non-linear model-order reduction in flexible multibody dynamics[J]. International Journal for Numerical Methods in Engineering, 2007, 69(5): 948-977. doi: 10.1002/nme.1795
    [9] TANG Y X, HU H Y, TIAN Q. Model order reduction based on successively local linearizations for flexible multibody dynamics[J]. International Journal for Numerical Methods in Engineering, 2019, 118(3): 159-180. doi: 10.1002/nme.6011
    [10] BRACCESI C, CIANETTI F. Development of selection methodologies and procedures of the modal set for the generation of flexible body models for multi-body simulation[J]. Proceedings of the Institution of Mechanical Engineers (Part K): Journal of Multi-Body Dynamics, 2004, 218(1): 19-30.
    [11] LIANG G, HUANG Y, LI H, et al. Nonlinear compressed sensing-based adaptive modal shapes selection approach for efficient dynamic response analysis of flexible multibody system[J]. Nonlinear Dynamics, 2021, 105(4): 3393-3407. doi: 10.1007/s11071-021-06747-y
    [12] SHABANA A A, SCHWERTASSEK R. Equivalence of the floating frame of reference approach and finite element formulations[J]. International Journal of Non-Linear Mechanics, 1998, 33(3): 417-432. doi: 10.1016/S0020-7462(97)00024-3
    [13] KANE T R. Dynamics of a cantilever beam attached to a moving base[J]. Journal of Guidance, Control, and Dynamics, 1987, 10(2): 139-139. doi: 10.2514/3.20195
    [14] SHABANA A A. An absolute nodal coordinate formulation for the large rotation and deformation analysis of flexible bodies: MBS96-1-UIC[R]. Chicago: University of Illinois at Chicago, 1996.
    [15] KOBAYASHI N, WAGO T, SUGAWARA Y. Reduction of system matrices of planar beam in ANCF by component mode synthesis method[J]. Multibody System Dynamics, 2011, 26(3): 265-281. doi: 10.1007/s11044-011-9259-6
    [16] BERZERI M, SHABANA A A. Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation[J]. Journal of Sound and Vibration, 2000, 235(4): 539-565. doi: 10.1006/jsvi.1999.2935
    [17] GULLIKSSON M, OLEYNIK A. Greedy Gauss-Newton algorithms for finding sparse solutions to nonlinear underdetermined systems of equations[J]. Optimization, 2017, 66(7): 1201-1217. doi: 10.1080/02331934.2017.1307982
    [18] 王启生, 蒋建平, 李庆军, 等. 空间机器人组装超大型结构的动力学分析[J]. 应用数学和力学, 2022, 43(8): 835-845. doi: 10.21656/1000-0887.420244

    WANG Qisheng, JIANG Jianping, LI Qingjun, et al. Dynamic analyses of the assembling process of ultra-large structures witch space robots[J]. Applied Mathematics and Mechanics, 2022, 43(8): 835-845. (in Chinese) doi: 10.21656/1000-0887.420244
    [19] 卓英鹏, 王刚, 齐朝晖, 等. 节点参数含应变的空间几何非线性样条梁单元[J]. 应用数学和力学, 2022, 43(9): 987-1003. doi: 10.21656/1000-0887.420290

    ZHUO Yingpeng, WANG Gang, QI Zhaohui, et al. A spatial geometric nonlinearity spline beam element with nodal parameters containing strains[J]. Applied Mathematics and Mechanics, 2022, 43(9): 987-1003. (in Chinese) doi: 10.21656/1000-0887.420290
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  458
  • HTML全文浏览量:  138
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-14
  • 修回日期:  2023-03-28
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回