留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维稳态磁流体动力学方程的Liouville定理

田琴 向长林 别群益

田琴, 向长林, 别群益. 三维稳态磁流体动力学方程的Liouville定理[J]. 应用数学和力学, 2023, 44(10): 1250-1259. doi: 10.21656/1000-0887.430375
引用本文: 田琴, 向长林, 别群益. 三维稳态磁流体动力学方程的Liouville定理[J]. 应用数学和力学, 2023, 44(10): 1250-1259. doi: 10.21656/1000-0887.430375
TIAN Qin, XIANG Changlin, BIE Qunyi. On the Liouville Theorems for 3D Stationary Magnetohydrodynamic Equations[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1250-1259. doi: 10.21656/1000-0887.430375
Citation: TIAN Qin, XIANG Changlin, BIE Qunyi. On the Liouville Theorems for 3D Stationary Magnetohydrodynamic Equations[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1250-1259. doi: 10.21656/1000-0887.430375

三维稳态磁流体动力学方程的Liouville定理

doi: 10.21656/1000-0887.430375
基金项目: 

国家自然科学基金项目 11871305

国家自然科学基金项目 12271296

详细信息
    作者简介:

    田琴(1998—),女,硕士生(E-mail: 1321540194@qq.com)

    别群益(1970—),男,教授,博士,博士生导师(E-mail: qybie@126.com)

    通讯作者:

    向长林(1984—),男,副教授,博士,博士生导师(通讯作者. E-mail: changlin.xiang@ctgu.edu.cn)

  • 中图分类号: O175.2

On the Liouville Theorems for 3D Stationary Magnetohydrodynamic Equations

  • 摘要: 研究了三维稳态磁流体动力学方程的Liouville定理. 首先由能量估计建立了一个Caccioppoli型不等式,再结合Sobolev嵌入得到了Liouville定理成立的3个充分条件,其中一个充分条件表明:若三维稳态磁流体动力学方程的光滑解( u , b )∈Lp,3/2 < p < 3,则 u = b 0 . 该结果在不需要有限Dirichlet积分的条件下,将Lebesgue空间中可积指标的下界从2扩展至3/2,改进和推广了已有关于磁流体动力学方程Liouville定理的一些结论.
  • [1] 施惟慧, 王曰朋, 沈春. Navier-Stokes方程与Euler方程的稳定性比较[J]. 应用数学和力学, 2006, 27(9): 1101-1107. doi: 10.3321/j.issn:1000-0887.2006.09.013

    SHI Weihui, WANG Yuepeng, SHEN Chun. Comparison of stability between Navier-Stokes and Euler equations[J]. Applied Mathematics and Mechanics, 2006, 27(9): 1101-1107. (in Chinese) doi: 10.3321/j.issn:1000-0887.2006.09.013
    [2] 谢洪燕, 李杰, 贺方毅. 关于轴对称Navier-Stokes方程正则性的一个注记[J]. 应用数学和力学, 2017, 38(3): 276-283. doi: 10.21656/1000-0887.370192

    XIE Hongyan, LI Jie, HE Fangyi. A note on the regularity of axisymmetric Navier-Stokes equations[J]. Applied Mathematics and Mechanics, 2017, 38(3): 276-283. (in Chinese) doi: 10.21656/1000-0887.370192
    [3] 王小霞. 含非线性阻尼的2D g-Navier-Stokes方程解的一致渐近性[J]. 应用数学和力学, 2022, 43(4): 416-423. doi: 10.21656/1000-0887.410398

    WANG Xiaoxia. Uniform asymptotic behavior of solutions of 2D g-Navier-Stokes equations with nonlinear damping[J]. Applied Mathematics and Mechanics, 2022, 43(4): 416-423. (in Chinese) doi: 10.21656/1000-0887.410398
    [4] CHAE D, WENG S. Liouville type theorems for the steady axially symmetric Navier-Stokes and magnetohydrodynamic equations[J]. Discrete & Continuous Dynamical Systems, 2016, 36(10): 5267-5285.
    [5] CHAE D. Liouville-type theorems for the forced Euler equations and the Navier-Stokes equations[J]. Communications in Mathematical Physics, 2014, 326(1): 37-48. doi: 10.1007/s00220-013-1868-x
    [6] CHAE D, WOLF J. On Liouville type theorems for the steady Navier-Stokes equations in R3[J]. Journal of Differential Equations, 2016, 261(10): 5541-5560. doi: 10.1016/j.jde.2016.08.014
    [7] GIAQUINTA M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems: Vol 105 [M]. Princeton University Press, 2016.
    [8] SEREGIN G. Remarks on Liouville-type theorems for steady-state Navier-Stokes equations[J]. Petersburg Mathematical Journal, 2019, 30(2): 321-328. doi: 10.1090/spmj/1544
    [9] CHAE D, YONEDA T. On the Liouville theorem for the stationary Navier-Stokes equations in a critical space[J]. Journal of Mathematical Analysis and Applications, 2013, 405(2): 706-710. doi: 10.1016/j.jmaa.2013.04.040
    [10] GALDI G. An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems[M]. Springer Science & Business Media, 2011.
    [11] KOZONO H, TERASAWA Y, WAKASUGI Y. A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions[J]. Journal of Functional Analysis, 2017, 272(2): 804-818. doi: 10.1016/j.jfa.2016.06.019
    [12] SEREGIN G, WANG W. Sufficient conditions on Liouville-type theorems for the 3D steady Navier-Stokes equations[J]. Petersburg Mathematical Journal , 2020, 31(2): 387-393. doi: 10.1090/spmj/1603
    [13] SCHULZ S. Liouville-type theorem for the stationary equations of magnetohydrodynamics[J]. Acta Mathematica Scientia, 2019, 39(2): 491-497. doi: 10.1007/s10473-019-0213-7
    [14] YUAN B, XIAO Y. Liouville-type theorems for the 3D stationary Navier-Stokes, MHD and Hall-MHD equations[J]. Journal of Mathematical Analysis and Applications, 2020, 491(2): 124343. doi: 10.1016/j.jmaa.2020.124343
    [15] 周艳平, 别群益, 王其如, 等. 三维稳态MHD方程和Hall-MHD方程的Liouville型定理[J]. 中国科学: 数学, 2023, 53(3): 431-440. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK202303002.htm

    ZHOU Yanping, BIE Qunyi, WANG Qiru, et al. On Liouville type theorems for three-dimensional stationary MHD and Hall-MHD equations[J]. Scientia Sinica: Mathematica, 2023, 53(3): 431-440. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK202303002.htm
    [16] CHEN X, LI S, WANG W. Remarks on Liouville-type theorems for the steady MHD and Hall-MHD equations[J]. Journal of Nonlinear Science, 2022, 32(1): 1-20. doi: 10.1007/s00332-021-09760-y
    [17] STEIN E M. Singular Integrals and Differentiability Properties of Functions[M]. Princeton University Press, 1970.
  • 加载中
计量
  • 文章访问数:  513
  • HTML全文浏览量:  142
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-22
  • 修回日期:  2023-03-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回