留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带功能梯度过渡区域的各向异性转动圆环的弹性分析

彭旭龙 谢小朋 黄海平 魏文超 唐雪松

彭旭龙, 谢小朋, 黄海平, 魏文超, 唐雪松. 带功能梯度过渡区域的各向异性转动圆环的弹性分析[J]. 应用数学和力学, 2023, 44(9): 1145-1156. doi: 10.21656/1000-0887.440003
引用本文: 彭旭龙, 谢小朋, 黄海平, 魏文超, 唐雪松. 带功能梯度过渡区域的各向异性转动圆环的弹性分析[J]. 应用数学和力学, 2023, 44(9): 1145-1156. doi: 10.21656/1000-0887.440003
PENG Xulong, XIE Xiaopeng, HUANG Haiping, WEI Wenchao, TANG Xuesong. Elastic Analysis of Anisotropic Rotating Sandwich Circular Ring With a Functionally Graded Transition Region[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1145-1156. doi: 10.21656/1000-0887.440003
Citation: PENG Xulong, XIE Xiaopeng, HUANG Haiping, WEI Wenchao, TANG Xuesong. Elastic Analysis of Anisotropic Rotating Sandwich Circular Ring With a Functionally Graded Transition Region[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1145-1156. doi: 10.21656/1000-0887.440003

带功能梯度过渡区域的各向异性转动圆环的弹性分析

doi: 10.21656/1000-0887.440003
基金项目: 

湖南省自然科学基金项目 2022JJ30583

湖南省教育厅自然科学研究基金项目 21B0315

详细信息
    通讯作者:

    彭旭龙(1983—),女,副教授,博士,硕士生导师(通讯作者. E-mail: peng_xulong@csust.edu.cn)

  • 中图分类号: O343.6;O343.8

Elastic Analysis of Anisotropic Rotating Sandwich Circular Ring With a Functionally Graded Transition Region

  • 摘要: 对绕刚性轴匀速转动的各向异性转动圆环进行了弹性分析. 仿照自然界中贝壳的三层构造结构,假定圆环由相互黏结非常好的3个区域组成,内外区域由均匀各向异性材料组成,而过渡区域的材料性能沿径向任意梯度变化. 结合边界条件和界面处的连续性条件,采用积分方程方法可得关于径向应力的第二类Fredholm积分方程,进而通过对其进行数值求解,得到了夹层圆环结构的应力场与位移场. 对于工程实际中不同梯度变化情况,只需代入相应的材料性能变化形式即可求解. 数值算例部分,通过与常用的特殊幂函数梯度变化形式得到的精确解进行对比,验证了积分方程方法的有效性和精确性. 同时重点分析了过渡区域材料性能按Voigt函数变化时各向异性度、材料梯度参数、过渡区域厚度等对夹层圆环结构应力场和位移场的影响. 该文采用的积分方程方法将为带功能梯度层的各向异性夹层圆环结构的优化设计提供强有力的分析方法. 数值分析结果也将为夹层圆环结构的安全设计提供理论指导依据.
  • 图  1  功能梯度夹层圆环模型

    Figure  1.  Diagram of a functionally graded sandwich ring

    图  2  幂函数时数值解和解析解的比较(qn=ρω2b2, un=ρω2b2/Er)

    Figure  2.  Comparisons of the exact and numerical results with the power law function (qn=ρω2b2, un=ρω2b2/Er)

    图  3  各向异性度λ对应力场和位移场的影响

    Figure  3.  The influences of anisotropic degree λ on the stress field and the displacement field

    图  4  梯度参数β对应力与位移场的影响

    Figure  4.  The influences of gradient parameter β on the stress field and displacement fields

    图  5  功能过渡区域厚度参数t对应力场和位移场的影响

    Figure  5.  The influences of thickness parameter t in the functional transition region on the stress field and the displacement field

  • [1] KOIZUMI M. FGM activities in Japan[J]. Composites (Part B): Engineering, 1997, 28(1/2): 1-4.
    [2] CHO H J, KIM Y, ERB U. Thermal conductivity of copper-diamond composite materials produced by electrodeposition and the effect of TiC coatings on diamond particles[J]. Composites (Part B): Engineering, 2018, 155: 197-203. doi: 10.1016/j.compositesb.2018.08.014
    [3] CHEN W, YANG Y, LEE H, et al. Estimation for inner surface geometry of a two-layer-wall furnace with inner wall made of functionally graded materials[J]. International Communications in Heat and Mass Transfer, 2018, 97: 143-150. doi: 10.1016/j.icheatmasstransfer.2018.07.009
    [4] 邓子玉, 陈丽婷. 梯度功能材料的梯度设计与应力分析[J]. 沈阳理工大学学报, 2016, 35(5): 73-77. doi: 10.3969/j.issn.1003-1251.2016.05.015

    DENG Ziyu, CHEN Liting. Gradient design and stress analysis of gradient functional materials[J]. Journal of Shenyang University of Science and Technology, 2016, 35(5): 73-77. (in Chinese) doi: 10.3969/j.issn.1003-1251.2016.05.015
    [5] 马翠红. 基于梯蕃的环形聚合物合成及拓扑结构研究[D]. 博士学位论文. 广州: 华东师范大学, 2022.

    MA Cuihong. Synthesis and topological structure of ring polymers based on Tibo[D]. PhD Thesis. Guangzhou: East China Normal University, 2022. (in Chinese)
    [6] DAI T, DAI H L. Thermo-elastic analysis of a functionally graded rotating hollow circular disk with variable thickness and angular speed[J]. Applied Mathematical Modeling, 2016, 40(17/18): 7689-7707.
    [7] DANESH V, ASGHARI M. Analysis of micro-rotating disks based on the strain gradient elasticity[J]. Acta Mechanica, 2013, 225: 1955-1965.
    [8] OBATA Y, NODA N. Steady thermal stresses in a hollow circular cylinder and a hollow sphere of a functionally gradient material[J]. Journal of Thermal Stresses, 1994, 17: 471-487. doi: 10.1080/01495739408946273
    [9] 陈康, 苏奕翔, 金春龙. 一种功能梯度盘心结构轮盘的应力分析[C]//第九届中国航空学会青年科技论坛. 西安, 2020.

    CHEN Kang, SU Yixiang, JIN Chunlong. Stress analysis of a functional gradient disc center structure wheel[C]//The 9 th Youth Science and Technology Forum of Chinese Society of Aeronautics and Astronautics. Xi'an, 2020. (in Chinese)
    [10] ABDALLA H, CASAGRANDE D, MORO L. Thermo-mechanical analysis and optimization of functionally graded rotating disks[J]. The Journal of Strain Analysis for Engineering Design, 2020, 55(5/6): 159-171.
    [11] 张莹, 梅靖, 陈鼎, 等. 功能梯度圆板和环板受周边力作用的弹性力学解[J]. 应用数学和力学, 2018, 39(5): 538-547. doi: 10.21656/1000-0887.380275

    ZHANG Ying, MEI Jing, CHEN Ding, et al. Elasticity solutions for functionally graded circular and annular plates subjected to boundary forces and moments[J]. Applied Mathematics and Mechanics, 2018, 39(5): 538-547. (in Chinese) doi: 10.21656/1000-0887.380275
    [12] HORGAN C. The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials[J]. Journal of Elasticity, 1999, 55: 43-59. doi: 10.1023/A:1007625401963
    [13] PENG X L, LI X F. Effects of gradient on stress distribution in rotating functionally graded solid disks[J]. Journal of Mechanical Science and Technology, 2012, 26(5): 1483-1492. doi: 10.1007/s12206-012-0339-1
    [14] PENG X L, LI X F. Elastic analysis of rotating functionally graded polar orthotropic disks[J]. International Journal of Mechanical Sciences, 2012, 60(1): 84-91. doi: 10.1016/j.ijmecsci.2012.04.014
    [15] PENG X L, LI X F. Thermal stress in rotating functionally graded hollow circular disks[J]. Composite Structures, 2010, 92(8): 1896-1904. doi: 10.1016/j.compstruct.2010.01.008
    [16] 刘明伟, 高艺航, 张大鹏, 等. 热塑性复合材料力学问题研究进展[J]. 航空材料学报, 2022, 42(5): 52-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB202205004.htm

    LIU Mingwei, GAO Yihang, ZHANG Dapeng, et al. Research progress on typical mechanical problems of thermoplastic composites[J]. Journal of Aeronautical Materials, 2022, 42(5): 52-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB202205004.htm
    [17] 杨坤, 张玮, 杜度. 复合材料夹层结构动力学特性研究进展[J]. 玻璃钢/复合材料, 2019, 11(9): 110-118. https://www.cnki.com.cn/Article/CJFDTOTAL-BLGF201909020.htm

    YANG Kun, ZHANG Wei, DU Du. The research progress of dynamic characteristics of the composite sandwich structure[J]. Fiber Reinforced Plastics/Composites, 2019, 11(9): 110-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BLGF201909020.htm
    [18] 高淑悦. 基于3D打印氧化锆陶瓷的夹层结构力学性能研究[D]. 硕士学位论文. 上海: 上海应用技术大学, 2021.

    GAO Shuyue. Study on mechanical properties of sandwich structure based on 3D printing zirconia ceramics[D]. Master Thesis. Shanghai: Shanghai University of Technology, 2021. (in Chinese)
    [19] 刘思敏, 张慧华, 韩尚宇, 等. 连续及不连续各向异性热传导问题的数值流形方法求解[J]. 应用数学和力学, 2020, 41(6): 591-603. doi: 10.21656/1000-0887.400289

    LIU Simin, ZHANG Huihua, HAN Shangyu, et al. Solutions of continuous and discontinuous anisotropic heat conduction problems with the numerical manifold method[J]. Applied Mathematics and Mechanics, 2020, 41(6): 591-603. (in Chinese) doi: 10.21656/1000-0887.400289
    [20] 俞海, 刘云鹏. 梯度界面对Cu/WCP功能梯度材料力学性能影响[J]. 应用力学学报, 2022, 39(6): 1178-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202206019.htm

    YU Hai, LIU Yunpeng. The effect of gradient interface on mechanical properties of Cu/WCP functional gradient materials[J]. Chinese Journal of Applied Mechanics, 2022, 39(6): 1178-1184. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202206019.htm
    [21] OMER O. A strong-form meshfree computational method for plane electrostatic equations of anisotropic functionally graded materials via multiple-scale Pascal polynomials[J]. Engineering Analysis With Boundary Elements, 2023, 146: 132-145. doi: 10.1016/j.enganabound.2022.09.009
    [22] 彭旭龙, 黄海平, 李进宝, 等. 变厚度各向异性功能梯度转动圆盘的弹性分析[J]. 应用数学和力学, 2022, 43(10): 1146-1154. doi: 10.21656/1000-0887.430032

    PENG Xulong, HUANG Haiping, LI Jinbao, et al. Elastic analysis of anisotropic functionally graded rotating disks with non-uniform thicknesses[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1146-1154. (in Chinese) doi: 10.21656/1000-0887.430032
    [23] 彭旭龙, 李显方. 任意梯度分布功能梯度圆环的热弹性分析[J]. 应用数学和力学, 2009, 30(10): 1135-1142. doi: 10.3879/j.issn.1000-0887.2009.10.001

    PENG Xulong, LI Xianfang. Thermoelastic analysis of a functionally graded annulus with an arbitrary gradient[J]. Applied Mathematics and Mechanics, 2009, 30(10): 1135-1142. (in Chinese) doi: 10.3879/j.issn.1000-0887.2009.10.001
    [24] 刘旭, 姚林泉. 热环境中旋转功能梯度纳米环板的振动分析[J]. 应用数学和力学, 2020, 41(11): 1224-1236. doi: 10.21656/1000-0887.410090

    LIU Xu, YAO Linquan. Vibration analysis of rotating functionally gradient nano annular plates in thermal environment[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1224-1236. (in Chinese) doi: 10.21656/1000-0887.410090
    [25] BHATTACHARYA S, SHARMA K. Fatigue crack growth simulations of FGM plate under cyclic thermal load by XFEM[J]. Procedia Engineering, 2014, 86: 727-731.
    [26] YILDIRIM V. Numerical/analytical solutions to the elastic response of arbitrarily functionally graded polar orthotropic rotating discs[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40: 320.
    [27] 唐长亮, 戴兴建, 汪勇. 多层混杂复合材料飞轮力学设计与旋转试验[J]. 清华大学学报(自然科学版), 2015, 55(3): 361-367. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201503021.htm

    TANG Changliang, DAI Xingjian, WANG Yong. Mechanical design and spin test of a multi-layer commingled composite flywheel[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(3): 361-367. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201503021.htm
    [28] DINI A, NEMATOLLAHI M A, HOSSEINI M. Analytical solution for magneto-thermo-elastic responses of an annular functionally graded sandwich disk by considering internal heat generation and convective boundary condition[J]. Journal of Sandwich Structures and Materials, 2019, 23(2): 1-26.
    [29] 彭旭龙. 功能梯度材料相关的几个动静态问题分析及结构优化[D]. 博士学位论文. 长沙: 中南大学, 2010.

    PENG Xulong. Several static and dynamic problems and structure design on functionally graded materials[D]. PhD Thesis. Changsha: Central South University, 2010. (in Chinese)
    [30] ATKINSON K E, SHAMPINE L F. Algorithm 876: solving Fredholm integral equations of the second kind in MATLAB[J]. ACM Transactions on Mathematical Software, 2008, 34(4): 113-132.
  • 加载中
图(5)
计量
  • 文章访问数:  418
  • HTML全文浏览量:  144
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-04
  • 修回日期:  2023-01-27
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回