留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹着点对钢筋混凝土侵彻深度的影响

黄成龙 陈叶青 李述涛 张生 王振清

黄成龙, 陈叶青, 李述涛, 张生, 王振清. 弹着点对钢筋混凝土侵彻深度的影响[J]. 应用数学和力学, 2023, 44(9): 1097-1111. doi: 10.21656/1000-0887.440016
引用本文: 黄成龙, 陈叶青, 李述涛, 张生, 王振清. 弹着点对钢筋混凝土侵彻深度的影响[J]. 应用数学和力学, 2023, 44(9): 1097-1111. doi: 10.21656/1000-0887.440016
HUANG Chenglong, CHEN Yeqing, LI Shutao, ZHANG Sheng, WANG Zhenqing. Influences of Impact Points on the Penetration Depth of Reinforced Concrete[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1097-1111. doi: 10.21656/1000-0887.440016
Citation: HUANG Chenglong, CHEN Yeqing, LI Shutao, ZHANG Sheng, WANG Zhenqing. Influences of Impact Points on the Penetration Depth of Reinforced Concrete[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1097-1111. doi: 10.21656/1000-0887.440016

弹着点对钢筋混凝土侵彻深度的影响

doi: 10.21656/1000-0887.440016
(我刊编委王振清来稿)
基金项目: 

国家自然科学基金项目 11532013

国家自然科学基金项目 11872157

详细信息
    作者简介:

    黄成龙(1997—),男,博士生(E-mail: huangchenglong@hrbeu.edu.cn)

    通讯作者:

    王振清(1962—),男,教授,博士,博士生导师(通讯作者. E-mail: wangzhenqing@hrbeu.edu.cn)

  • 中图分类号: O385

Influences of Impact Points on the Penetration Depth of Reinforced Concrete

(Contributed by WANG Zhenqing, M. AMM Editorial Board)
  • 摘要: 在弹体侵彻钢筋混凝土研究领域,侵彻深度的离散性普遍存在于试验和经验公式中,弹着点位置的不同是造成此离散性的主要原因之一. 为探究由弹着点位置造成的侵彻深度离散性并揭示其机理,参照公开发表的侵彻试验,建立了三种典型弹着点位置的有限元模型,对比分析出了三种典型弹着点位置侵彻过程差异的主要原因,依据数值计算结果归纳了表征侵彻深度离散性的表达式,提出了弹体侵彻钢筋混凝土侵彻深度是一个范围值的基本思想,并对表达式进行了初步验证. 结果表明,造成侵彻深度离散性的主要因素是弹体撞击钢筋的数目和弹体接触钢筋的持续时间,此离散性随着弹径与钢筋网眼尺寸比值的增大而减小.
    1)  (我刊编委王振清来稿)
  • 图  1  全尺寸模型(单位:mm)

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  The full-size model(unit: mm)

    图  2  弹塑性硬化模型应力-应变图

    Figure  2.  The stress-strain relationship of the elastoplastic hardening model

    图  3  靶体损伤情况对比

    Figure  3.  Comparison of target damages

    图  4  数值模拟侵彻深度时程图

    Figure  4.  The penetration depth time history of the numerical simulation

    图  5  全区域精细化网格靶体(单位: mm)

    Figure  5.  The target model with global fine grids(unit: mm)

    图  6  三种典型弹着点位置示意图

    Figure  6.  Schematic diagram of 3 typical impact point positions

    图  7  三种典型弹着点位置时程图对比

    Figure  7.  Time history comparison of 3 typical impact point positions

    图  8  3.1 ms前弹体加速度时程图

    Figure  8.  Projectile acceleration time histories before 3.1 ms

    图  9  钢筋交叉点情况下侵彻过程模拟图

    Figure  9.  Simulation diagrams of the penetration process at the rebar crossing point

    图  10  钢筋网眼中点情况下侵彻过程模拟图

    Figure  10.  Simulation diagrams of the penetration process at the rebar grid midpoint

    图  11  钢筋侧边中点情况下侵彻过程模拟图

    Figure  11.  Simulation diagrams of the penetration process at the rebar side midpoint

    图  12  侵彻深度与d/D的关系

    Figure  12.  Relationships between the penetration depth and d/D

    图  13  无量纲表达式拟合曲线

    Figure  13.  The fitting curve of the dimensionless expression

    图  14  归一化侵彻深度与d/D的关系

    Figure  14.  Relationships between the normalized

    图  15  归一化侵彻深度关于d/D的拟合曲线

    Figure  15.  Fitting curves of the normalized penetration penetration depth and d/D depth with respect to d/D

    表  1  弹体及钢筋材料模型参数

    Table  1.   Material model parameters of the projectile and the reinforcement

    material name ρ/(kg·m-3) E/Pa μ σ0/Pa Et/Pa β C/ s-1 P failure strain εF
    projectile 7.91×103 2.1×1011 0.30 - - - - - -
    reinforcement 7.80×103 2.0×1011 0.29 3.45×108 2×109 0 0.8
    下载: 导出CSV

    表  2  混凝土材料模型参数

    Table  2.   Material model parameters of concrete

    material name ρ/(kg·m-3) μ Ft/Pa A0/Pa α β
    concrete 2.44×103 0.2 4×106 -4.8×107 39.37 1.45×10-4
    下载: 导出CSV

    表  3  侵彻深度计算结果

    Table  3.   Calculation results of the penetration depth

    impact point position rebar grid midpoint rebar crossing point rebar side midpoint
    h/mm 1 113 1 149 1 117
    下载: 导出CSV

    表  4  各工况数值计算结果

    Table  4.   Numerical calculation results of each working condition

    d/mm D/mm d/D μ/% h/mm
    rebar grid midpoint rebar crossing point average value difference value
    156 200 0.78 0.36 1 490 1 230 1 360 260
    156 150 1.04 0.48 1 250 1 160 1 205 90
    156 100 1.56 0.71 1 113 1 149 1 131 -36
    156 80 1.95 0.83 978 1 030 1 004 -52
    156 70 2.23 0.94 963 952 957.5 11
    156 60 2.60 1.12 934 907 920.5 27
    156 50 3.12 1.35 869 874 871.5 -5
    156 40 3.90 1.69 843 863 853 -20
    156 34 4.59 1.98 815 799 807 16
    156 30 5.20 2.21 763 749 756 14
    下载: 导出CSV

    表  5  数值模拟和表达式的计算结果

    Table  5.   Calculation results of the numerical simulation and the expression

    D/mm d/D hM/mm error δM/% hC/mm error δC/%
    simulation expression simulation expression
    172 0.91 1 291 1 363 5.58 1 199 1 201 0.17
    90 1.73 1 018 1 031 1.28 1 081 1 084 0.28
    44 3.55 865 847 2.08 866 859 0.81
    下载: 导出CSV
  • [1] YOUNG C W. Penetration equations: SAND97-2426[R]. Albuquerque, NM, USA, 1997.
    [2] BERNARD R S, CREIGHTON D C. Projectile penetration in soil and rock: analysis for non-normal impact[R]. Vicksburg, USA, 1979.
    [3] BERNARD R S. Depth and motion prediction for earth penetrators[R]. Vicksburg, USA, 1978.
    [4] BERNARD R S. Empirical analysis of projectile penetration in rock[R]. Vicksburg, USA, 1977.
    [5] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. International Journal of Impact Engineering, 1994, 15(4): 395-405. doi: 10.1016/0734-743X(94)80024-4
    [6] National Defence Research Committee. Effects of impact and explosion[R]. Washington DC, USA, 1946.
    [7] Department of the Army. Fundamentals of protective design for conventional weapons: TM 5-855-1[R]. Washington DC, USA, 1986.
    [8] 王安宝, 邓国强, 杨秀敏, 等. 一个新的通用型侵彻深度计算公式[J]. 土木工程学报, 2021, 54(10): 36-46. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202110005.htm

    WANG Anbao, DENG Guoqiang, YANG Xiumin, et al. A new general formula for calculating penetration depth[J]. China Civil Engineering Journal, 2021, 54(10): 36-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202110005.htm
    [9] 任辉启, 穆朝民, 刘瑞朝, 等. 精确制导武器侵彻效应与工程防护[M]. 北京: 科学出版社, 2016.

    REN Huiqi, MU Chaomin, LIU Ruichao, et al. Penetration Effect and Engineering Protection of Precision Guided Weapons[M]. Beijing: Science Press, 2016. (in Chinese)
    [10] 刘云飞, 王天运, 蒋沧如. 弹体侵彻混凝土深度计算公式分析[J]. 武汉理工大学学报, 2004, 26(1): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200401014.htm

    LIU Yunfei, WANG Tianyun, JIANG Cangru. Analysis on depth calculation of projectiles penetration into concrete[J]. Journal of Wuhan University of Technology, 2004, 26(1): 49-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200401014.htm
    [11] 周宁, 任辉启, 沈兆武, 等. 卵形头部弹丸侵彻钢筋混凝土的工程解析模型[J]. 振动与冲击, 2007, 26(4): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200704016.htm

    ZHOU Ning, REN Huiqi, SHEN Zhaowu, et al. Engineering analytical model for ogive-nose projectiles to penetrate into semi-infinite reinforced concrete targets[J]. Journal of Vibration and Shock, 2007, 26(4): 73-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200704016.htm
    [12] 欧阳春, 赵国志, 杜中华, 等. 弹丸垂直侵彻钢筋混凝土介质的工程解析模型[J]. 爆炸与冲击, 2004, 24(3): 273-277. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200403013.htm

    OUYANG Chun, ZHAO Guozhi, DU Zhonghua, et al. An engineering analytical model for projectiles to penetrate normally into semi-infinite reinforced concrete targets[J]. Explosion and Shock Waves, 2004, 24(3): 273-277. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200403013.htm
    [13] 穆朝民, 任辉启. 弹丸对钢筋混凝土中钢筋交汇处侵彻效应研究[J]. 高压物理学报, 2010, 24(5): 351-358. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201005006.htm

    MU Chaoming, REN Huiqi. Research on the effect of the projectile penetrating into the reinforced concrete targets at the intersection of the steel bar[J]. Chinese Journal of High Pressure Physics, 2010, 24(5): 351-358. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201005006.htm
    [14] 楼建锋, 王政, 朱建士, 等. 含筋率和弹着点对钢筋混凝土抗侵彻性能的影响[J]. 爆炸与冲击, 2010, 30(2): 178-182. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201002013.htm

    LOU Jianfeng, WANG Zheng, ZHU Jianshi, et al. Effects of reinforcement ratio and impact position on anti-penetration properties of reinforced concrete[J]. Explosion and Shock Waves, 2010, 30(2): 178-182. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201002013.htm
    [15] 孙其然, 李芮宇, 赵亚运, 等. HJC模型模拟钢筋混凝土侵彻实验的参数研究[J]. 工程力学, 2016, 33(8): 248-256. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201608032.htm

    SUN Qiran, LI Ruiyu, ZHAO Yayun, et al. Investigation on parameters of HJC model applied to simulate perforation experiments of reinforced concrete[J]. Engineering Mechanics, 2016, 33(8): 248-256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201608032.htm
    [16] 程毅, 刘军, 刘晓峰, 等. 垂直侵彻下钢筋混凝土靶抗侵彻性能的理论与数值分析[J]. 科学技术与工程, 2019, 19(1): 97-103. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201901015.htm

    CHENG Yi, LIU Jun, LIU Xiaofeng, et al. Theoretical and numerical analysis on anti-penetration property of reinforced concrete target under normal penetration[J]. Science Technology and Engineering, 2019, 19(1): 97-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201901015.htm
    [17] 武海军, 张爽, 黄风雷. 钢筋混凝土靶的侵彻与贯穿研究进展[J]. 兵工学报, 2018, 39(1): 182-208. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201801020.htm

    WU Haijun, ZHANG Shuang, HUANG Fenglei. Research progress in penetration/perforation into reinforced concrete targets[J]. Acta Armamentarii, 2018, 39(1): 182-208. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201801020.htm
    [18] 邓勇军, 陈小伟, 钟卫洲, 等. 弹体正侵彻钢筋混凝土靶的试验及数值模拟研究[J]. 爆炸与冲击, 2020, 40(2): 26-36. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202002003.htm

    DENG Yongjun, CHEN Xiaowei, ZHONG Weizhou, et al. Experimental and numerical study on normal penetration of a projectile into a reinforced concrete target[J]. Explosion and Shock Waves, 2020, 40(2): 26-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202002003.htm
    [19] CHEN X W, LI Q M. Transition from nondeformable projectile penetration to semihydrodynamic penetration[J]. Journal of Engineering Mechanics, 2004, 130(1): 123-127.
    [20] 张涛, 方秦, 吴昊, 等. 飞机撞击核安全壳不同位置破坏效应的数值模拟[J]. 应用数学和力学, 2015, 36(S1): 107-116. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX2015S1015.htm

    ZHANG Tao, FANG Qin, WU Hao, et al. Numerical simulation on the response and damage of nuclear containment under the different aircraft impact positons[J]. Applied Mathematics and Mechanics, 2020, 36(S1): 107-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX2015S1015.htm
    [21] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D[J]. International Journal of Impact Engineering, 1997, 19(9/10): 847-873.
    [22] 门建兵, 隋树元, 蒋建伟, 等. 网格对混凝土侵彻数值模拟的影响[J]. 北京理工大学学报, 2005, 25(8): 659-662. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG200508000.htm

    MEN Jianbing, SUI Shuyuan, JIANG Jianwei, et al. Mesh dependency for numerical simulation of concrete penetration[J]. Journal of Beijing Institute of Technology, 2005, 25(8): 659-662. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG200508000.htm
    [23] 辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册[M]. 北京: 机械工业出版社, 2019.

    XIN Chunliang, XUE Zaiqing, TU Jian, et al. Handbook of Material Parameters Commonly Used in Finite Element Analysis[M]. Beijing: China Machine Press, 2019. (in Chinese)
    [24] 赵均海, 孙珊珊, 党会学, 等. 钢管混凝土柱抗爆性能数值模拟与实验验证[J]. 应用数学和力学, 2020, 41(9): 943-955. doi: 10.21656/1000-0887.400207

    ZHAO Junhai, SUN Shanshan, DANG Huixue, et al. Numerical simulation and test validation for concreted filled steel tube columns under blast loading[J]. Applied Mathematics and Mechanics, 2020, 41(9): 943-955. (in Chinese) doi: 10.21656/1000-0887.400207
    [25] MALVAR L J, SIMONS D. Concrete material modeling in explicit computations[C]//Workshop on Recent Advances in Computational Structural Dynamics and High Performance Computing. Vicksburg, MS: USAE Waterways Experiment Station, 1996.
    [26] 熊益波. LS-DYNA中简单输入混凝土模型适用性分析[C]//第十一届全国冲击动力学学术会议论文集. 西安: 西北核技术研究所, 2013.

    XIONG Yibo. Applicability analysis of simple input concrete models in LS-DYNA[C]//Proceedings of the 11th National Conference on Impact Dynamics. Xi'an: Northwest Institute of Nuclear Technology, 2013. (in Chinese)
    [27] 解江, 李翰, 周书婷, 等. 爆炸冲击载荷下航空铝合金平板动态响应数值分析方法[J]. 应用数学和力学, 2017, 38(4): 410-420. doi: 10.21656/1000-0887.370252

    XIE Jiang, LI Han, ZHOU Shuting, et al. A numerical method for dynamic responses of aviation aluminum alloy plates under blast loads[J]. Applied Mathematics and Mechanics, 2017, 38(4): 410-420. (in Chinese) doi: 10.21656/1000-0887.370252
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  500
  • HTML全文浏览量:  120
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-18
  • 修回日期:  2023-07-05
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回