留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玻璃微珠液滴碰撞分离过程数值研究

李慧玲 胡晓磊 余子寒 谢能刚

李慧玲, 胡晓磊, 余子寒, 谢能刚. 玻璃微珠液滴碰撞分离过程数值研究[J]. 应用数学和力学, 2023, 44(12): 1512-1521. doi: 10.21656/1000-0887.440043
引用本文: 李慧玲, 胡晓磊, 余子寒, 谢能刚. 玻璃微珠液滴碰撞分离过程数值研究[J]. 应用数学和力学, 2023, 44(12): 1512-1521. doi: 10.21656/1000-0887.440043
LI Huiling, HU Xiaolei, YU Zihan, XIE Nenggang. Numerical Study on the Collision-Separation Process of Glass Bead Droplets[J]. Applied Mathematics and Mechanics, 2023, 44(12): 1512-1521. doi: 10.21656/1000-0887.440043
Citation: LI Huiling, HU Xiaolei, YU Zihan, XIE Nenggang. Numerical Study on the Collision-Separation Process of Glass Bead Droplets[J]. Applied Mathematics and Mechanics, 2023, 44(12): 1512-1521. doi: 10.21656/1000-0887.440043

玻璃微珠液滴碰撞分离过程数值研究

doi: 10.21656/1000-0887.440043
基金项目: 

安徽省高等学校自然科学研究重点项目 KJ2021A0368

安徽省高校优秀科研创新团队 2022AH010027

详细信息
    作者简介:

    李慧玲(1997—),女,硕士生(E-mail: lhl197@163.com)

    通讯作者:

    胡晓磊(1987—),男,副教授,博士,硕士生导师(通讯作者. E-mail: hu0423@126.com)

  • 中图分类号: O35

Numerical Study on the Collision-Separation Process of Glass Bead Droplets

  • 摘要: 采用耦合水平集和流体体积(CLSVOF)法对等直径的玻璃微珠液滴对心碰撞过程进行数值模拟,重点研究了玻璃微珠液滴碰撞分离过程中的物理机制. 在与正十四烷液滴碰撞实验对比验证的基础上,数值研究了分离过程中玻璃微珠液滴的形态变化和能量变化规律. 研究表明,玻璃微珠液滴碰撞分离过程所需能量主要由液滴动能和表面能提供,且动能大部分转化为黏性耗散能. 通过对液滴能量和平均总压变化分析,得出液滴碰撞分离的4种状态,即径向拉伸到极限、径向收缩和轴向拉伸达到平衡、轴向拉伸到极限和液滴液桥夹断分离. 分析了4种状态的速度和压力分布,得出末端夹断机制是液滴碰撞分离的主要原因. 研究结果可为丰富玻璃微珠液滴碰撞理论提供基础.
  • 图  1  物理模型

    Figure  1.  The physical model

    图  2  数值方法的实验验证(We=61.4,Re=296.5,D0=336 μm)

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  Experimental verification of the numerical method(We=61.4, Re=296.5, D0=336 μm)

    图  3  计算结果(We=149, Re=135.52, Ur=44 m/s)

    Figure  3.  Calculation results (We=149, Re=135.52, Ur=44 m/s)

    图  4  玻璃微珠液滴碰撞分离过程能量变化曲线

    Figure  4.  Energy change curves of the glass bead droplet collision and separation process

    图  5  液滴平均总压变化

    Figure  5.  Changes in the average total droplet pressure

    图  6  t=2.0 μs时,液滴速度矢量图和压力云图

    Figure  6.  Droplet velocity vectors and pressure contours, t=2.0 μs

    图  7  t=4.0 μs时,液滴速度矢量图和压力云图

    Figure  7.  Droplet velocity vectors and pressure contours, t=4.0 μs

    图  8  t=6.0 μs时,液滴速度矢量图和压力云图

    Figure  8.  Droplet velocity vectors and pressure contours, t=6.0 μs

    图  9  t=11.5 μs时,液滴速度矢量图和压力云图

    Figure  9.  Droplet velocity vectors and pressure contours, t=11.5 μs

    表  1  正十四烷液滴的物理参数

    Table  1.   Physical parameters of n-tetradecane

    parameter name liquid density ρl/(kg/m3) liquid viscosity μl/(N·s/m2) gas density ρg/(kg/m3) gas viscosity μg/(N·s/m2) surface tension coefficient σ/(N/m)
    value 758 2.128×10-3 1.138 1.787×10-5 0.026
    下载: 导出CSV

    表  2  玻璃微珠液滴的物理参数

    Table  2.   Physical parameters of glass beads

    parameter name liquid density ρl/(kg/m3) liquid viscosity μl/(N·s/m2) gas density ρg/(kg/m3) gas viscosity μg/(N·s/m2) surface tension coefficient σ/(N/m)
    value 2 310 1.5×10-2 1.225 1.794×10-5 0.6
    下载: 导出CSV
  • [1] LIU L, YU S, NIU Y, et al. Preparation and properties of hollow glass microspheres reinforced Mg alloy degradable composites[J]. Journal of Alloys and Compounds, 2020, 835: 155198. doi: 10.1016/j.jallcom.2020.155198
    [2] 彭寿, 陈淑勇, 陈凯, 等. 玻璃粉料熔融球化过程的模拟研究[J]. 硅酸盐通报, 2016, 35(6): 1800-1806.

    PENG Shou, CHEN Shuyong, CHEN Kai, et al. Simulation research of glass powder particle melt spheroidizing process[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(6): 1800-1806. (in Chinese)
    [3] 夏盛勇, 胡春波. 三氧化二铝液滴对心碰撞直接数值模拟[J]. 应用数学和力学, 2014, 35(4): 377-388. doi: 10.3879/j.issn.1000-0887.2014.04.004

    XIA Shengyong, HU Chunbo. Direct numerical simulation of head-on binary collision of aluminum oxide droplets[J]. Applied Mathematics and Mechanics, 2014, 35(4): 377-388. (in Chinese) doi: 10.3879/j.issn.1000-0887.2014.04.004
    [4] FOSTIROPOULOS S, STROTOS G, NIKOLOPOULOS N, et al. Numerical investigation of heavy fuel oil droplet breakup enhancement with water emulsions[J]. Fuel, 2020, 278: 118381. doi: 10.1016/j.fuel.2020.118381
    [5] 尹强, 齐晓霓, 梁伟. 二元海水液滴对心碰撞过程数值模拟[J]. 应用数学和力学, 2020, 41(3): 268-279. doi: 10.21656/1000-0887.400196

    YIN Qiang, QI Xiaoxia, LIANG Wei. Numerical simulation of head-on binary collision between seawater droplets[J]. Applied Mathematics and Mechanics, 2020, 41(3): 268-279. (in Chinese) doi: 10.21656/1000-0887.400196
    [6] AMANI A, BALCAZAR N, GUTIÉRREZ E, et al. Numerical study of binary droplets collision in the main collision regimes[J]. Chemical Engineering Journal, 2019, 370: 477-498. doi: 10.1016/j.cej.2019.03.188
    [7] ASHNA M, RAHIMIAN M H. LMB simulation of head-on collision of evaporating and burning droplets in coalescence regime[J]. International Journal of Heat and Mass Transfer, 2017, 109: 520-536. doi: 10.1016/j.ijheatmasstransfer.2017.01.108
    [8] LIU X, WANG C, ZHAO Y, et al. Shear-driven two colliding motions of binary double emulsion droplets[J]. International Journal of Heat and Mass Transfer, 2018, 121: 377-389. doi: 10.1016/j.ijheatmasstransfer.2018.01.021
    [9] ZHANG Y R, ZHAO Z, LUO K H, et al. Size effects on dynamics of nanodroplets in binary head-on collisions[J]. Journal of Molecular Liquids, 2021, 341: 117383. doi: 10.1016/j.molliq.2021.117383
    [10] LI D, ZHANG D, ZHENG Z. Numerical analysis of hollow droplet impacts on a dry flat surface[J]. International Journal of Heat and Mass Transfer, 2019, 129: 753-763. doi: 10.1016/j.ijheatmasstransfer.2018.09.063
    [11] QIAN L, CONG H, ZHU C. A numerical investigation on the collision behavior of polymer droplets[J]. Polymers, 2020, 12(2): 263. doi: 10.3390/polym12020263
    [12] YUAN S, DABIRIAN R, SHOHAM O, et al. Numerical simulation of liquid droplet coalescence and breakup[J]. Journal of Energy Resources Technology, 2020, 142(10): 102101. doi: 10.1115/1.4046603
    [13] QIAN J, LAW C K. Regimes of coalescence and separation in droplet collision[J]. Journal of Fluid Mechanics, 1997, 331: 59-80. doi: 10.1017/S0022112096003722
    [14] 王金城, 关晖, 卫志军, 等. 壁面结构对三维可压缩气泡群影响的数值模拟研究[J]. 应用数学和力学, 2022, 43(1): 49-62. doi: 10.21656/1000-0887.420041

    WANG Jincheng, GUAN Hui, WEI Zhijun, et al. Numerical analysis on effects of wall structures on bubble groups[J]. Applied Mathematics and Mechanics, 2022, 43(1): 49-62. (in Chinese) doi: 10.21656/1000-0887.420041
    [15] 雷阳, 封建湖. 基于参数化水平集法的材料非线性子结构拓扑优化[J]. 应用数学和力学, 2021, 42(11): 1150-1160. doi: 10.21656/1000-0887.420090

    LEI Yang, FENG Jianhu. Topology optimization of nonlinear material structures based on parameterized level set and substructure methods[J]. Applied Mathematics and Mechanics, 2021, 42(11): 1150-1160. (in Chinese) doi: 10.21656/1000-0887.420090
    [16] SUSSMAN M, PUCKETT E G. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows[J]. Journal of Computational Physics, 2000, 162(2): 301-337. doi: 10.1006/jcph.2000.6537
    [17] TANG C, ZHANG P, LAW C K. Bouncing, coalescence, and separation in head-on collision of unequal-size droplets[J]. Physics of Fluids, 2012, 24(2): 022101. doi: 10.1063/1.3679165
    [18] YOSHINO M, SAWADA J, SUZUKI K. Numerical simulation of head-on collision dynamics of binary droplets with various diameter ratios by the two-phase lattice kinetic scheme[J]. Computers & Fluids, 2018, 168: 304-317.
    [19] MOQADDAM A M, CHIKATAMARLA S S, KARLIN I V. Simulation of binary droplet collisions with the entropic lattice Boltzmann method[J]. Physics of Fluids, 2016, 28(2): 022106. doi: 10.1063/1.4942017
    [20] 赵峻逸, 薛士东, 韩敬坤, 等. 双液滴碰撞行为及调控机制的研究进展[J]. 化工学报, 2021, 72(5): 2354-2372.

    ZHAO Junyi, XUE Shidong, HAN Jingkun, et al. Research progress of binary droplet collision behavior and regulation mechanism[J]. CIESC Journal, 2021, 72(5): 2354-2372. (in Chinese)
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  98
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-20
  • 修回日期:  2023-03-15
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回