A Research Review of Ship Mechanical Vibration Damping & Isolation Technologies and Algorithms
-
摘要: 针对船舶机械系统,介绍了隔振方法和吸振方法:包括浮筏隔振系统、动力吸振器的概念、应用背景和研究现状;同时介绍了被动控制、主动控制的概念和发展情况. 梳理了新型智能材料和新型结构形式,介绍了“准零刚度”隔振器、声学黑洞结构、智能材料作动器、主动和半主动吸振器等控制元件的概念、使用工况和发展,概述了主动控制的控制方法. 讨论了机械减隔振系统建模、计算、试验的理论数值方法. 最后总结和展望了船舶机械减隔振系统的发展方向.Abstract: The vibration isolation and absorption technologies for ship mechanical systems were reviewed, such as the concept, the application background, and the research status of floating raft vibration isolation systems and dynamic vibration absorbers. Meanwhile, the concept and development of passive control and active control were also analyzed. The smart materials and new structural forms were summarized. The concept, the working condition and the development of control components such as the quasi-zero stiffness vibration isolator, the acoustic black hole structure, the intelligent material actuator, and the active and semi-active dynamic vibration absorbers, were considered, and the control strategies of the active control were discussed. Besides, the theoretical and numerical methods for modelling, calculating and testing mechanical damping systems were also surveyed. At last, the development trend of the ship mechanical vibration reduction and isolation system was envisioned and portrayed.
-
表 1 不同类别电磁作动器的优缺点[31]
Table 1. Advantages and disadvantages of different types of electromagnetic actuators[31]
actuator type advantage disadvantage coil motion induced force to reduce vibration short magnetic circuit, small magnetic leakage short-circuit easily magnet motion induced force to reduce vibration easiness to dissipate heat large installation space, heavy weight magnet in the coil short magnetic circuit, small magnetic leakage small magnetic force magnet outside the coil strong magnetic force large magnetic leakage long coil small size high power consumption and low power efficiency short coil low power consumption large size -
[1] 俞孟萨, 叶剑平, 吴有生, 等. 船舶声呐部位自噪声的预报方法及其控制技术[J]. 船舶力学, 2002, 6(5): 80-94.YU Mengsa, YE Jianping, WU Yousheng, et al. Prediction and control method of self-noise in ship's sonar domes[J]. Journal of Ship Mechanics, 2002, 6(5): 80-94. (in Chinese) [2] 徐洋, 华宏星, 张志谊, 等. 舰船主动隔振技术综述[J]. 舰船科学技术, 2008, 30(2): 27-33.XU Yang, HUA Hongxing, ZHANG Zhiyi, et al. Summary of ship active vibration isolation system[J]. Ship Science and Technology, 2008, 30(2): 27-33. (in Chinese) [3] REN M Z. A variant design of the dynamic vibration absorber[J]. Journal of Sound and Vibration, 2001, 245(4): 762-770. doi: 10.1006/jsvi.2001.3564 [4] CHEUNG Y L, WONG W O, CHENG L. Optimization of a hybrid vibration absorber for vibration control of structures under random force excitation[J]. Journal of Sound and Vibration, 2013, 332(3): 494-509. doi: 10.1016/j.jsv.2012.09.014 [5] 孟令帅. 新型准零刚度隔振器的设计和特性研究[D]. 博士学位论文. 北京: 中国人民解放军军事医学科学院, 2015.MENG Lingshuai. Design and characteristics analysis of the novel quasi-zero stiffness isolator[D]. PhD Thesis. Beijing: Academy of Military Medical Sciences, 2015. (in Chinese) [6] NIU J C, SONG K J, LIM C W. On active vibration isolation of floating raft system[J]. Journal of Sound and Vibration, 2005, 285: 391-406. doi: 10.1016/j.jsv.2004.08.013 [7] JIANG G Q, WANG Y, LI F M, et al. An integrated nonlinear passive vibration control system and its vibration reduction properties[J]. Journal of Sound and Vibration, 2021, 509: 116231. doi: 10.1016/j.jsv.2021.116231 [8] 严济宽. 隔振降噪技术的新进展[J]. 噪声与振动控制, 1991(5/6): 11-16.YAN Jikuan. New development of vibration isolation and noise reduction technology[J]. Noise and Vibration Control, 1991(5/6): 11-16. (in Chinese) [9] 沈荣瀛. 船舶轮机振动噪声控制综述[J]. 机电设备, 1999(3) : 22-25.SHEN Rongying. A summary of vibration and noise control of ship turbine[J]. Mechanical and Electrical Equipment, 1999(3) : 22-25. (in Chinese) [10] IBRAHIM R A. Recent advances in nonlinear passive vibration isolators[J]. Journal of Sound and Vibration, 2008, 314: 371-452. doi: 10.1016/j.jsv.2008.01.014 [11] 李永胜, 王纬波, 张彤彤, 等. 复合结构浮筏设计及隔振性能研究[C]//第十八届船舶水下噪声学术讨论会论文集. 昆明: 中国船舶科学研究中心《船舶力学》编辑部, 2021.LI Yongsheng, WANG Weibo, ZHANG Tongtong, et al. Design of floating raft with composite structure and study on vibration isolation performance[C]//Proceedings of the 18 th Symposium on Ship Underwater Noise. Kunming: Journal of Ship Mechanics Editorial Office, China Ship Science Research Center, 2021. (in Chinese) [12] 靳帅楠, 靳国永, 叶天贵, 等. 船首声呐平台自噪声预报及综合控制[J]. 中国舰船研究, 2022, 17(S1): 10-18.JIN Shuainan, JIN Guoyong, YE Tiangui, et al. Predication and comprehensive control of self-noise of ship's sonar platform[J]. Chinese Journal of Ship Research, 2022, 17(S1): 10-18. (in Chinese) [13] TENG H D, CHEN Q. Study on vibration isolation properties of solid and liquid mixture[J]. Journal of Sound and Vibration, 2009, 326 : 137-149. doi: 10.1016/j.jsv.2009.04.036 [14] 刘兴天, 黄修长, 张志谊, 等. 激励幅值及载荷对准零刚度隔振器特性的影响[J]. 机械工程学报, 2013, 49(6): 89-94.LIU Xingtian, HUANG Xiuchang, ZHANG Zhiyi, et al. Influence of excitation amplitude and load on the characteristics of quasi-zero stiffness isolator[J]. Chinese Journal of Mechanical Engineering, 2013, 49(6): 89-94. (in Chinese) [15] HAO Z F, CAO Q J. The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness[J]. Journal of Sound and Vibration, 2015, 340: 61-79. doi: 10.1016/j.jsv.2014.11.038 [16] LI Y, XU D. Vibration attenuation of high dimensional quasi-zero stiffness floating raft system[J]. International Journal of Mechanical Sciences, 2017, 126: 186-195. doi: 10.1016/j.ijmecsci.2017.03.029 [17] 张华良, 瞿祖清, 傅志方. 浮筏隔振系统各主要参数对系统隔振性能的影响[J]. 振动与冲击, 2000, 19(2): 7-10.ZHANG Hualiang, QU Zuqing, FU Zhifang. The effects of parameters of floating raft isolation system on its isolation characteristics[J]. Journal of Vibration and Shock, 2000, 19(2): 7-10. (in Chinese) [18] MACHENS K U, DYER I. Energy partitioning in a truss structure[J]. The Journal of the Acoustical Society of America, 1995, 97(5): 3348. [19] 张峰, 许树浩, 俞孟萨. 桁架式浮筏隔振研究综述[C]//第十二届船舶水下噪声学术讨论会论文集. 长沙: 中国船舶科学研究中心《船舶力学》编辑部, 2009.ZHANG Feng, XU Shuhao, YU Mengsa. Research of vibration isolation of truss floating raft[C]//Proceedings of the 12 th Symposium on Ship Underwater Noise. Changsha: Journal of Ship Mechanics Editorial Office, China Ship Science Research Center, 2009. (in Chinese) [20] 徐时吟. 舱筏隔振系统的精细化建模及高效筏架设计研究[D]. 博士学位论文. 上海: 上海交通大学, 2016.XU Shiyin. Precise modelling of floating raft system and design of high-preformance raft[D]. PhD Thesis. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese) [21] MIRONOV M A. Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval[J]. Soviet Physics Acoustics-USSR, 1988, 34(3): 318-319. [22] PELAT A, GAUTIER F, CONLON S C, et al. The acoustic black hole: a review of theory and applications[J]. Journal of Sound and Vibration, 2020, 476: 115316. doi: 10.1016/j.jsv.2020.115316 [23] KRYLOV V V. Propagation of plate bending waves in the vicinity of one- and two-dimensional acoustic 'black holes'[C]//ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics & Earthquake Engineering. Rethymno, Crete, Greece, 2007. [24] 赵楠, 王禹, 陈林, 等. 分布式声学黑洞浮筏系统隔振性能研究[J]. 振动与冲击, 2022, 41(13): 75-80.ZHAO Nan, WANG Yu, CHEN Lin, et al. Vibration isolation performance of distributed acoustic black hole floating raft system[J]. Journal of Vibration and Shock, 2022, 41(13): 75-80. (in Chinese) [25] YANG G, SPENCER JR B F, CARLSON J D. Large-scale MR fluid dampers: modeling and dynamic performance considerations[J]. Engineering Structures, 2002, 24(3): 309-323. doi: 10.1016/S0141-0296(01)00097-9 [26] WILLIAMS K, CHIU G, BERNHARD R. Adaptive-passive absorbers using shape memory alloys[J]. Journal of Sound and Vibration, 2002, 249(5): 835-848. doi: 10.1006/jsvi.2000.3496 [27] 黎崛珉, 陆泽琦, 陈立群. 非线性阻尼非线性刚度隔振系统随机动力学特性研究[J]. 应用数学和力学, 2017, 38(6): 613-621. doi: 10.21656/1000-0887.370277LI Juemin, LU Zeqi, CHEN Liqun. An investigation on nonlinear-damping and nonlinear-stiffness vibration isolation systems under random excitations[J]. Applied Mathematics and Mechanics, 2017, 38(6): 613-621. (in Chinese) doi: 10.21656/1000-0887.370277 [28] SCHENK M, GUEST S D, HERDER J L. Zero stiffness tensegrity structures[J]. International Journal of Solids and Structures, 2007, 44(20): 6569-6583. doi: 10.1016/j.ijsolstr.2007.02.041 [29] CARRELLA A, BRENNAN M J, WATERS T P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound and Vibration, 2007, 301(3/5): 678-689. [30] 王心龙, 周加喜, 徐道临. 一类准零刚度隔振器的分段非线性动力学特性研究[J]. 应用数学和力学, 2014, 35(1): 50-62. doi: 10.3879/j.issn.1000-0887.2014.01.006WANG Xinlong, ZHOU Jiaxi, XU Daolin. On piecewise nonlinear dynamic characteristics of a new-type quasi-zero-stiffness vibration isolator with cam-roller-spring mechanism[J]. Applied Mathematics and Mechanics, 2014, 35(1): 50-62. (in Chinese) doi: 10.3879/j.issn.1000-0887.2014.01.006 [31] 张恒海. 发动机电磁式主动悬置隔振性能与自适应前馈控制研究[D]. 博士学位论文. 长春: 吉林大学, 2021.ZHANG Henghai. Vibration isolation performance and adaptive feedforward control of electromagnetic active engine mount[D]. PhD Thesis. Changchun: Jilin University, 2021. (in Chinese) [32] 姜荣俊, 何琳. 有源振动噪声控制技术在潜艇中的应用研究[J]. 噪声与振动控制, 2005(2) : 1-6.JIANG Rongjun, HE Lin. Application research of active noise and vibration control technology in submarines[J]. Noise and Vibration Control, 2005(2) : 1-6. (in Chinese) [33] 盖玉先, 董申. 振动主动控制中的作动器技术[J]. 航天工艺, 1999(6) : 45-48.GAI Yuxian, DONG Shen. Actuator technology in the active vibration control[J]. Aerospace Technology, 1999(6) : 45-48. (in Chinese) [34] 王晓雷. 气动隔振器及八作动器隔振平台控制问题研究[D]. 博士学位论文. 哈尔滨: 哈尔滨工业大学, 2008.WANG Xiaolei. Control of pneumatic isolator and octo-actuator vibration isolation platform[D]. PhD Thesis. Harbin: Harbin Institute of Technology, 2008. (in Chinese) [35] PANDA P K, SAHOO B, THEJAS T S. High strain lead-free piezo ceramics for sensor and actuator applications: a review[J]. Sensors International, 2023, 4: 100226. doi: 10.1016/j.sintl.2022.100226 [36] GARDONIO P, TURCO E, KRAS A, et al. Semi-active vibration control unit tuned to maximise electric power dissipation[J]. Journal of Sound and Vibration, 2021, 499: 116000. doi: 10.1016/j.jsv.2021.116000 [37] WANG Z, MAK C M. Application of a movable active vibration control system on a floating raft[J]. Journal of Sound and Vibration, 2018, 414: 233-244. doi: 10.1016/j.jsv.2017.11.026 [38] HU K M, LI H. Multi-parameter optimization of piezoelectric actuators for multi-mode active vibration control of cylindrical shells[J]. Journal of Sound and Vibration, 2018, 426: 166-185. doi: 10.1016/j.jsv.2018.04.021 [39] 陈学前, 汪小华, 阮剑华, 等. 两种独立模态空间控制法在柔性结构振动主动控制中的应用研究[J]. 中国科学技术大学学报, 2001, 31(6): 69-75.CHEN Xueqian, WANG Xiaohua, RUAN Jianhua, et al. Study on two independent modal space control methods in the vibration active control of flexibe structure[J]. Journal of University of Science and Technology, 2001, 31(6): 69-75. (in Chinese) [40] 席裕庚, 李德伟. 预测控制定性综合理论的基本思路和研究现状[J]. 自动化学报, 2008, 34(10): 1225-1234.XI Yugeng, LI Dewei. Fundamental philosophy and status of qualitative synthesis of model predictive control[J]. Acta Automatica Sinica, 2008, 34(10): 1225-1234. (in Chinese) [41] BALAS M J. Direct velocity feedback control of large space structures[J]. Journal of Guidance and Control, 1979, 2(3): 252-253. doi: 10.2514/3.55869 [42] FANSON J, CAUGHEY T K. Positive position feedback control for large space structures[J]. AIAA Journal, 1990, 28(4): 717-724. doi: 10.2514/3.10451 [43] 廖成毅, 杨颖, 吉宇人. 船舶动力定位控制策略研究综述[J]. 舰船科学技术, 2020, 42(17): 1-5.LIAO Chengyi, YANG Ying, JI Yuren. Research on ship dynamic positioning control strategies[J]. Ship Science and Technology, 2020, 42(17): 1-5. (in Chinese) [44] 吕敬高. 推进电机振动噪声主动控制技术综述[J]. 船电技术, 2020, 40(11): 60-64.LÜ Jinggao. Review of active vibration and noise control technology for marine propulsion motors[J]. Marine Electric & Electronic Engineering, 2020, 40(11): 60-64. (in Chinese) [45] UDWADIA F E, VON B H, PHOHOMSIRI P. Time-delayed control design for active control of structures: principles and applications[J]. Structural Control & Health Monitoring, 2007, 14(1): 27-61. [46] SONI T, DAS A S, DUTT J K. Active vibration control of ship mounted flexible rotor-shaft-bearing system during seakeeping[J]. Journal of Sound and Vibration, 2019, 467: 115046. [47] MARINANGELI L, ALIJANI F, HOSSEINNIA S H. Fractional-order positive position feedback compensator for active vibration control of a smart composite plate[J]. Journal of Sound and Vibration, 2018, 412: 1-16. doi: 10.1016/j.jsv.2017.09.009 [48] 袁明, 裘进浩, 季宏丽, 等. 基于同位加速度负反馈的振动主动控制研究[J]. 振动、测试与诊断, 2014, 34(2): 254-260.YUAN Ming, QIU Jinhao, JI Hongli, et al. Active control of vibration using collocated negative acceleration feedback strategy[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(2): 254-260. (in Chinese) [49] 杨晨. 船舶浮筏隔振系统振动主动控制[D]. 硕士学位论文. 大连: 大连海事大学, 2012.YANG Chen. Active vibration control of marine floating raft vibration isolation system[D]. Master Thesis. Dalian: Dalian Maritime University, 2012. (in Chinese) [50] KAMARUZAMAN N A, ROBERTSON W S P, GHAYESH M H, et al. Six degree of freedom quasi-zero stiffness magnetic spring with active control: theoretical analysis of passive versus active stability for vibration isolation[J]. Journal of Sound and Vibration, 2021, 502: 116086. doi: 10.1016/j.jsv.2021.116086 [51] 王俊芳, 张志谊. 自适应主动隔振中输出饱和抑制方法的仿真研究[J]. 系统仿真学报, 2010, 22(3): 674-677.WANG Junfang, ZHANG Zhiyi. Simulation on method for output-saturation suppression in adaptive vibration isolation[J]. Journal of System Simulation, 2010, 22(3): 674-677. (in Chinese) [52] 曹斌芳. 自适应噪声抵消技术的研究[D]. 硕士学位论文. 长沙: 湖南大学, 2007.CAO Binfang. Research on adaptive noise cancelling technology[D]. Master Thesis. Changsha: Hunan University, 2007. (in Chinese) [53] 张旻旻. 水下噪声低频线谱主动控制仿真及试验研究[D]. 硕士学位论文. 哈尔滨: 哈尔滨工程大学, 2018.ZHANG Minmin. Underwater noise low frequency spectrum active control simulation and experimental research[D]. Master Thesis. Harbin: Harbin Engineering University, 2018. (in Chinese) [54] 吴磊. 船用柴油发电机组主被动复合隔振技术应用研究[D]. 博士学位论文. 哈尔滨: 哈尔滨工程大学, 2021.WU Lei. Application research of active and passive hybrid vibration isolation technology for marine diesel generator set[D]. PhD Thesis. Harbin: Harbin Engineering University, 2021. (in Chinese) [55] LI Y, HE L, SHUAI C G, et al. Improved hybrid isolator with maglev actuator integrated in air spring for active-passive isolation of ship machinery vibration[J]. Journal of Sound and Vibration, 2017, 407: 226-239. doi: 10.1016/j.jsv.2017.07.007 [56] 马召召, 周瑞平, 杨庆超, 等. 船用主被动混合隔振器的自适应控制研究[J]. 船舶力学, 2023, 27(3): 446-455.MA Zhaozhao, ZHOU Ruiping, YANG Qingchao, et al. Adaptive control of marine active-passive hybrid vibration isolators[J]. Journal of Ship Mechanics, 2023, 27(3): 446-455. (in Chinese) [57] HASHEMINEJAD S M, KASAEISANI A. Smart hybrid active/semi-active distributed structural acoustic control of thin- and thick-walled piezo-sandwich bimorph spherical shellcloaks[J]. Journal of Sound and Vibration, 2023, 522: 117591. [58] VIOLA G, SAUNDERS T, WEI X, et al. Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics[J]. Journal of Advanced Dielectrics, 2013, 3(1): 135007. [59] TIGLI O F. Optimum vibration absorber (tuned mass damper) design for linear damped systems subjected to random loads[J]. Journal of Sound and Vibration, 2012, 331(13): 3035-3049. doi: 10.1016/j.jsv.2012.02.017 [60] DAVIS C L, LESIEUTRE G A. An actively tuned solid-state vibration absorber using capacitive shunting of piezoelectric stiffness[J]. Journal of Sound and Vibration, 2000, 232(3): 601-617. doi: 10.1006/jsvi.1999.2755 [61] VAURIGAUD B, SAVADKOOHI A T, LAMARQUE C. Targeted energy transfer with parallel nonlinear energy sinks, part Ⅰ: design theory and numerical results[J]. Nonlinear Dynamics, 2011, 66(4): 763-780. doi: 10.1007/s11071-011-9949-x [62] WANG T, TANG Y, YANG T Z, et al. Bistable enhanced passive absorber based on integration of nonlinear energy sink with acoustic black hole beam[J]. Journal of Sound and Vibration, 2023, 544: 117409. doi: 10.1016/j.jsv.2022.117409 [63] SHENG H, HE M X, DING Q. Vibration suppression by mistuning acoustic black hole dynamic vibration absorbers[J]. Journal of Sound and Vibration, 2022, 542: 117370. [64] 孙斌, 吴志强. 基于非线性能量阱的双频激励非线性系统减振[J]. 应用数学和力学, 2017, 38(11): 1240-1250. doi: 10.21656/1000-0887.370379SUN Bin, WU Zhiqiang. Vibration suppression of nonlinear systems under dual-frequency excitations with nonlinear energy sink[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1240-1250. (in Chinese) doi: 10.21656/1000-0887.370379 [65] 傅涛. 电磁式主动吸振器的设计方法与试验研究[D]. 博士学位论文. 广州: 华南理工大学, 2019.FU Tao. Research on design methodology and experiment of electromagnetic active dynamic vibration absorber[D]. PhD Thesis. Guangzhou: South China University of Technology, 2019. (in Chinese) [66] KASSEM M, ZHICHUN Y, YINGSONG G, et al. Active dynamic vibration absorber for flutter suppression[J]. Journal of Sound and Vibration, 2020, 469: 115110. doi: 10.1016/j.jsv.2019.115110 [67] RASID S M R, MIZUNO T, ISHINO Y, et al. Design and control of active vibration isolation system with an active dynamic vibration absorber operating as accelerometer[J]. Journal of Sound and Vibration, 2019, 438 : 175-190. doi: 10.1016/j.jsv.2018.09.037 [68] 杨志荣, 李清云, 戴乐阳, 等. 船用磁流变弹性体动力吸振器的性能研究[J]. 船舶力学, 2018, 22(4): 509-515.YANG Zhirong, LI Qingyun, DAI Leyang, et al. Study on property of marine dynamic vibration absorber based on magneto-rheological elastomers[J]. Journal of Ship Mechanics, 2018, 22(4): 509-515. (in Chinese) [69] 李浩田, 王海芳, 李凌轩, 等. 空气-磁流变液半主动型动力吸振器的研究[J]. 机床与液压, 2022, 50(18): 1-5.LI Haotian, WANG Haifang, LI Lingxian, et al. Study of air-MR semi-active dynamic vibration absorber[J]. Machine Tool & Hydraulics, 2022, 50(18): 1-5. (in Chinese) [70] 邢昭阳, 申永军, 邢海军, 等. 一种半主动负刚度动力吸振器[J]. 振动与冲击, 2021, 40(15): 123-128.XING Zhaoyang, SHEN Yongjun, XING Haijun, et al. A semi-active negative stiffness dynamic vibration absorber[J]. Journal of Vibration and Shock, 2021, 40(15): 123-128. (in Chinese) [71] 王田. 变频变阻尼半主动式动力吸振器的研究与优化设计[D]. 硕士学位论文. 石家庄: 石家庄铁道大学, 2020.WANG Tian. Research and optimization of a semi-active dynamic absorber with variable frequency and variable damping[D]. Master Thesis. Shijiazhuang: Shijiazhuang Tiedao University, 2020. (in Chinese) [72] KECIK K. Assessment of energy harvesting and vibration mitigation of a pendulum dynamic absorber[J]. Mechanical Systems and Signal Processing, 2018, 106: 198-209. doi: 10.1016/j.ymssp.2017.12.028 [73] 李凯翔, 李鹏, 周江贝. 频率自适应动力吸振器设计与控制策略[C]//中国力学大会. 杭州, 2019.LI Kaixiang, LI Peng, ZHOU Jiangbei. Adaptive dynamic vibration absorber and its control strategy[C]//CCTAM 2019 . Hangzhou, 2019. (in Chinese) [74] 丁少虎. 水下有限长弹性圆柱壳振动声辐射有源控制[D]. 博士学位论文. 西安: 西北工业大学, 2015.DING Shaohu. Active control of sound radiated from a submerged finite cylindrical shell[D]. PhD Thesis. Xi'an: Northwestern Polytechnical University, 2015. (in Chinese) [75] 杨晓一, 祁伟栋, 曹杰. 模态分析在浮筏隔振系统设计中的应用[J]. 船舶工程, 2022, 44(8): 1-6.YANG Xiaoyi, QI Weidong, CAO Jie. Application of modal analysis in the floating raft isolation system design[J]. Ship Engineering, 2022, 44(8): 1-6. (in Chinese) [76] 刘硕. 船舶环境激励下的结构模态参数识别研究[D]. 硕士学位论文. 大连: 大连理工大学, 2011.LIU Shuo. Study on identification of structure modal parameters based on the excitation of ship operational condition[D]. Master Thesis. Dalian: Dalian University of Technology, 2011. (in Chinese) [77] 李中付, 华宏星. 一种非稳态环境激励下线性结构的模态参数辨识方法[J]. 振动与冲击, 2008, 119(3): 8-12.LI Zhongfu, HUA Hongxing. Modal parameters identification of linear structures undergo in non-stationary ambient excitation[J]. Journal of Vibration and Shock, 2008, 119(3): 8-12. (in Chinese) [78] 黄继嗣. 充液管路线谱噪声主动控制试验[J]. 船舶工程, 2022, 44(9): 76-81.HUANG Jisi. Experimental on active control of line-spectrum noise in liquid-filled pipe[J]. Ship Engineering, 2022, 44(9): 76-81. (in Chinese) [79] 薛伟敏, 华宏星. 基于试验数据的频响函数综合法概述[J]. 噪声与振动控制, 2013, 33(4): 68-74.XUE Weimin, HUA Hongxing. Review of FRF-based substructure method using experimental data[J]. Noise and Vibration Control, 2013, 33(4): 68-74. (in Chinese) [80] 黄修长, 徐时吟, 张志谊, 等. 基于频响函数综合的舱筏隔振系统灵敏度分析和优化[J]. 振动与冲击, 2011, 30(5): 145-151.HUANG Xiuchang, XU Shiyin, ZHANG Zhiyi, et al. Design sensitivity analysis and optimization of a floating raft system using a FRF-based substructuring method[J]. Journal of Vibration and Shock, 2011, 30(5): 145-151. (in Chinese) [81] 高云剑, 黄修长, 华宏星. 基于频响函数综合的浮筏隔振系统误差传递分析[J]. 噪声与振动控制, 2013, 33(3): 39-43.GAO Yunjian, HUANG Xiuchang, HUA Hongxing. Analysis of uncertainty propagation in floating raft system using FRF-based substructuring method[J]. Noise and Vibration Control, 2013, 33(3): 39-43. (in Chinese) [82] 况成玉, 张志谊, 华宏星. 周期桁架浮筏系统的隔振特性研究[J]. 振动与冲击, 2012, 31(2): 115-118.KUANG Chengyu, ZHANG Zhiyi, HUA Hongxing. Vibration isolation characteristics analysis of a floating raft system constructed with periodic truss structures[J]. Journal of Vibration and Shock, 2012, 31(2): 115-118. (in Chinese) [83] 程世祥, 张志谊, 华宏星. 周期桁架结构浮筏隔振特性分析与实验研究[J]. 噪声与振动控制, 2011, 31(6): 5-9.CHENG Shixiang, ZHANG Zhiyi, HUA Hongxing. Analysis and experiment on vibration isolation characteristics of a periodic truss raft system[J]. Noise and Vibration Control, 2011, 31(6): 5-9. (in Chinese) [84] 张峰. 空间桁架浮筏声学设计方法及降噪特性研究[D]. 博士学位论文. 北京: 中国舰船研究院, 2012.ZHANG Feng. Acoustic design method and noise reduction performance analysis of space truss raft system[D]. PhD Thesis. Beijing: China Ship Research and Development Academy, 2012. (in Chinese) [85] BOUTHIER O M, BERNHARD R J. Models of space-averaged energetics of plates[J]. AIAA Journal, 1992, 30(3): 616-622. doi: 10.2514/3.10964 [86] 王占辉, 高俊吉. 一种开域静磁场双标量位混合有限元边界元法研究[J]. 船电技术, 2013, 33(6): 19-21.WANG Zhanhui, GAO Junji. A hybrid finite element-boundary element method with double scalar potentials for open boundary magnetostatic problems[J]. Marine Electric & Electronic Engineering, 2013, 33(6): 19-21. (in Chinese) [87] 谭星星. 潜水装备内部基座阻抗分析及优化设计研究[D]. 硕士学位论文. 成都: 电子科技大学, 2022.TAN Xingxing. Research on impedance analysis and optimization design of diving equipment internal base[D]. Master Thesis. Chengdu: University of Electronic Science and Technology of China, 2022. (in Chinese) [88] 王宇, 陈兴林, 李光民, 等. 船舶汽轮发电机组浮筏隔振系统建模及振动[J]. 海军工程大学学报, 2011, 23(6): 57-62.WANG Yu, CHEN Xinglin, LI Guangmin, et al. Modeling of marine-generator and buoyant raft vibration isolation system and analysis of its vibration[J]. Journal of Naval University of Engineering, 2011, 23(6): 57-62. (in Chinese) [89] 杨东杰. 舱段典型机械结构振动传递特性研究[D]. 硕士学位论文. 哈尔滨: 哈尔滨工程大学, 2011.YANG Dongjie. Research on vibration transfer characteristics of cabin typical mechanical structure[D]. Master Thesis. Harbin: Harbin Engineering University, 2011. (in Chinese) [90] 吴轶钢. 零阶能量有限元方法及其在船舶结构声辐射中的应用研究[D]. 博士学位论文. 武汉: 武汉理工大学, 2008.WU Yigang. The research on zero-order energy flow analysis and its application in structural acoustic problems of ship structure[D]. PhD Thesis. Wuhan: Wuhan University of Technology, 2008. (in Chinese) [91] 方斌, 李瀚钦, 金哲民, 等. 水下结构声辐射FEM/BEM简化计算方法研究[J]. 海军工程大学学报, 2019, 31(1): 74-79.FANG Bin, LI Hanqin, JIN Zhemin, et al. On simplified FEM/BEM method for acoustic radiation of underwater structures[J]. Journal of Naval University of Engineering, 2019, 31(1): 74-79. (in Chinese) [92] ZHANG J, LIN W, DONG Y, et al. A double-layer interpolation method for implementation of BEM analysis of problems in potential theory[J]. Applied Mathematical Modelling, 2017, 51: 250-269. doi: 10.1016/j.apm.2017.06.044 [93] ZOU M, TANG H, LIU S. Modeling and calculation of acoustic radiation of underwater stiffened cylindrical shells treated with local damping[J]. Marine Structures, 2023, 88: 103366. doi: 10.1016/j.marstruc.2022.103366 [94] 刘涛, 汤渭霖, 何世平. 数值/解析混合方法计算含复杂结构的有限长圆柱壳体声辐射[J]. 船舶力学, 2003, 7(4) : 99-104.LIU Tao, TANG Weilin, HE Shiping. Computation of sound radiation from complicated cylindrical shell by using numerical analytical matching method[J]. Journal of Ship Mechanics, 2003, 7(4) : 99-104. (in Chinese) [95] 刘见华, 金咸定. 结构声传递数值计算方法的研究进展[J]. 振动与冲击, 2002, 21(4) : 46-51.LIU Jianhua, JIN Xianding. Reaearch advances of numerical computing methods for structure-borne propagation[J]. Journal of Vibration and Shock, 2002, 21(4) : 46-51. (in Chinese) [96] 李志远, 彭子龙, 温华兵, 等. 浮筏筏体结构改进设计及隔振性能分析[J]. 噪声与振动控制, 2019, 39(5): 245-249.LI Zhiyuan, PENG Zilong, WEN Huabin, et al. Analysis of vibration isolation performance for an improved floating raft structure[J]. Noise and Vibration Control, 2019, 39(5): 245-249. (in Chinese) [97] 吴江海, 苏明珠, 席亦农, 等. 基于TPA的船舶机械系统振动传递特性分析[J]. 振动、测试与诊断, 2023, 43(1): 139-143.WU Jianghai, SU Mingzhu, XI Yinong, et al. Analysis of vibration transmission characteristics of ship mechanical system based on TPA[J]. Journal of Vibration, Measurement & Diagnosis, 2023, 43(1): 139-143. (in Chinese) [98] 邹涛, 洪明. 浮筏隔振系统振动能量传递研究[C]//第十八届船舶水下噪声学术讨论会论文集. 昆明: 中国船舶科学研究中心《船舶力学》编辑部, 2021: 955-962.ZOU Tao, HONG Ming. Research on vibration energy transfer of floating raft vibration isolation system[C]//Proceedings of the 18 th Symposium on Ship Underwater Noise. Kunming: Journal of Ship Mechanics Editorial Office, China Ship Science Research Center, 2021: 955-962. (in Chinese)