留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无摩擦弹性接触问题的自适应交替方向乘子法

袁欣 张守贵

袁欣, 张守贵. 无摩擦弹性接触问题的自适应交替方向乘子法[J]. 应用数学和力学, 2023, 44(8): 989-998. doi: 10.21656/1000-0887.440079
引用本文: 袁欣, 张守贵. 无摩擦弹性接触问题的自适应交替方向乘子法[J]. 应用数学和力学, 2023, 44(8): 989-998. doi: 10.21656/1000-0887.440079
YUAN Xin, ZHANG Shougui. A Self-Adaptive Alternating Direction Multiplier Method for Frictionless Elastic Contact Problems[J]. Applied Mathematics and Mechanics, 2023, 44(8): 989-998. doi: 10.21656/1000-0887.440079
Citation: YUAN Xin, ZHANG Shougui. A Self-Adaptive Alternating Direction Multiplier Method for Frictionless Elastic Contact Problems[J]. Applied Mathematics and Mechanics, 2023, 44(8): 989-998. doi: 10.21656/1000-0887.440079

无摩擦弹性接触问题的自适应交替方向乘子法

doi: 10.21656/1000-0887.440079
基金项目: 

国家自然科学基金项目 11971085

重庆市自然科学基金项目 cstc2020jcyj-msxmX0066

重庆市研究生教育教学改革研究项目 yjg213071

详细信息
    作者简介:

    袁欣(1997—), 女, 硕士生(E-mail: 1577279037@qq.com)

    通讯作者:

    张守贵(1973—), 男, 教授, 博士, 硕士生导师(通讯作者. E-mail: shgzhnag@cqnu.edu.cn)

  • 中图分类号: O221.6

A Self-Adaptive Alternating Direction Multiplier Method for Frictionless Elastic Contact Problems

  • 摘要: 对一类无摩擦的弹性接触问题,得到了求其数值解的自适应交替方向乘子法.由该问题导出相应的变分问题,引入辅助变量将原问题转化为一个基于增广Lagrange函数表示的鞍点问题,并采用交替方向乘子法求解;为了提高算法性能,提出了利用边界迭代函数自动选取合适罚参数的自适应法则. 该算法的优点是每次迭代只需计算一个线性变分问题,同时显式计算了辅助变量和Lagrange乘子. 对算法的收敛性进行了理论分析,最后用数值结果验证了该算法的可行性和有效性.
  • 图  1  形变后的弹性体及障碍函数(算例1)

    Figure  1.  The deformed configuration and the obstacle function (example 1)

    图  2  g=0.01时的算法迭代次数

    Figure  2.  The number of iterations for each obstacle function (example 1) method with g=0.01

    图  3  形变后的弹性体及障碍函数(算例2)

    Figure  3.  The deformed configuration and the obstacle

    图  4  各算法的迭代次数

    Figure  4.  The number of iterations for each method function (example 2)

    表  1  g=0.01时3种算法的CPU运行时间

    Table  1.   CPU time for 3 methods with g=0.01

    ρ ADMM1 ADMM2 SADMM
    $h=\frac{1}{10}$ $h=\frac{1}{20}$ $h=\frac{1}{30}$ $h=\frac{1}{40}$ $h=\frac{1}{10}$ $h=\frac{1}{20}$ $h=\frac{1}{30}$ $h=\frac{1}{40}$ $h=\frac{1}{10}$ $h=\frac{1}{20}$ $h=\frac{1}{30}$ $h=\frac{1}{40}$
    1 3.080 9.305 29.344 37.788 5.213 12.865 24.283 41.639 0.562 1.171 2.617 4.214
    10 2.670 8.665 34.726 37.629 5.137 12.331 23.814 40.909 0.454 1.135 2.342 3.891
    102 0.611 2.890 6.224 10.178 1.474 4.169 7.156 11.393 0.610 0.984 2.145 3.632
    103 0.229 0.896 1.842 3.765 0.577 1.223 1.978 3.943 0.425 0.650 1.321 2.516
    104 0.306 1.223 2.905 5.742 0.502 1.228 2.479 4.286 0.409 0.743 1.496 2.699
    下载: 导出CSV

    表  2  3种算法的CPU运行时间

    Table  2.   CPU time for 3 methods

    ρ ADMM1 ADMM2 SADMM
    $h=\frac{1}{10}$ $h=\frac{1}{20}$ $h=\frac{1}{30}$ $h=\frac{1}{40}$ $h=\frac{1}{10}$ $h=\frac{1}{20}$ $h=\frac{1}{30}$ $h=\frac{1}{40}$ $h=\frac{1}{10}$ $h=\frac{1}{20}$ $h=\frac{1}{30}$ $h=\frac{1}{40}$
    1 4.114 13.733 35.051 54.791 4.008 13.227 30.753 53.383 0.378 1.313 3.129 7.029
    10 3.827 13.505 39.201 65.841 3.792 12.91 29.465 52.564 0.381 1.227 2.982 6.649
    102 1.565 5.294 16.247 26.196 1.256 5.132 12.322 22.394 0.314 1.116 2.645 5.985
    103 0.933 2.552 7.530 12.051 0.872 2.386 5.276 8.389 0.238 0.786 1.932 5.017
    104 0.699 2.059 6.003 10.109 0.384 1.306 3.059 5.449 0.315 0.948 2.313 3.849
    下载: 导出CSV
  • [1] 韩渭敏, 程晓良. 变分不等式简介: 基本理论数值分析及应用[M]. 北京: 高等教育出版社, 2007.

    HAN Weimin, CHENG Xiaoliang. Introduction to Variational Inequalities: Numerical Analysis and Application of Basic Theory[M]. Beijing: Higher Education Press, 2007. (in Chinese)
    [2] 王耀东. 变分不等方程[M]. 北京: 高等教育出版社, 1987.

    WANG Yaodong. Equation of Variational Inequality[M]. Beijing: Higher Education Press, 1987. (in Chinese)
    [3] 赵雪芬, 李星. 带裂纹十次对称二维准晶平面弹性的无摩擦接触问题[J]. 应用数学和力学, 2019, 40(2): 223-236. doi: 10.21656/1000-0887.390127

    ZHAO Xuefen, LI Xing. A frictionless contact problem of 2D decagonal quasicrystal plane elasticity with cracks[J]. Applied Mathematics and Mechanics, 2019, 40(2): 223-236. (in Chinese) doi: 10.21656/1000-0887.390127
    [4] kANNO Y. An accelerated Uzawa method for application to frictionless contact problem[J]. Optimization Letters, 2020, 14(7): 1845-1854. doi: 10.1007/s11590-019-01481-2
    [5] HUANG Z J, CHENG X L. An accelerated method of Uzawa algorithm in contact problems[J]. Computers Mathematics With Applications, 2022, 127 : 97-104. doi: 10.1016/j.camwa.2022.09.030
    [6] GLOWINSkI R, LE TALLEC P. Augmented Lagrangian and Operator-splitting Methods in Nonlinear Mechanics[M]//Studies in Applied and Numerical Mathematics. SIAM, 1989.
    [7] kOkO J. Uzawa block relaxation method for the unilateral contact problem[J]. Journal of Computational and Applied Mathematics, 2011, 235(8): 2343-2356. doi: 10.1016/j.cam.2010.10.032
    [8] kOkO J. Alternating direction method of multiplier for the unilateral contact problem with an automatic penalty parameter selection[J]. Applied Mathematical Modelling, 2020, 78 : 706-723. doi: 10.1016/j.apm.2019.09.031
    [9] STADLER G. Path-following and augmented Lagrangian methods for contact problems in linear elasticity[J]. Journal of Computational and Applied Mathematics, 2007, 203(2): 706-723.
    [10] ZHANG S G, LI X L. Boundary augmented Lagrangian method for contact problems in linear elasticity[J]. Engineering Analysis With Boundary Elements, 2015, 61 : 127-133. doi: 10.1016/j.enganabound.2015.07.006
    [11] ZHANG S G, LI X L. A self-adaptive projection method for contact problems with the BEM[J]. Applied Mathematical Modelling, 2018, 55 : 145-159. doi: 10.1016/j.apm.2017.10.022
    [12] ZHANG S G, LI X L. Self-adaptive projection and boundary element methods for contact problems with Tresca friction[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 68 : 72-85. doi: 10.1016/j.cnsns.2018.05.001
    [13] GLOWINSkI R. Numerical Methods for Nonlinear Variational Problems[M]. Berlin: Springer-Verlag, 2008.
    [14] 郭楠馨, 张守贵. 自由边界问题的自适应Uzawa块松弛算法[J]. 应用数学和力学, 2019, 40(6): 682-693. doi: 10.21656/1000-0887.390347

    GUO Nanxin, ZHANG Shougui. A self-adaptive Uzawa block relaxation algorithm for free boundary problems[J]. Applied Mathematics and Mechanics, 2019, 40(6): 682-693. (in Chinese) doi: 10.21656/1000-0887.390347
    [15] HE B S. Self-adaptive operator splitting methods for monotone variational inequalities[J]. Numerische Mathematik, 2013, 94(4): 715-737.
    [16] 王欣, 郭科. 一类非凸优化问题广义交替方向法的收敛性[J]. 应用数学和力学, 2018, 39(12): 1410-1425. doi: 10.21656/1000-0887.380334

    WANG Xin, GUO ke. Convergence of the generalized alternating direction method of multipliers for a class of nonconvex optimization problems[J]. Applied Mathematics and Mechanics, 2018, 39(12): 1410-1425. (in Chinese) doi: 10.21656/1000-0887.380334
    [17] ZHANG S G, GUO N X. Uzawa block relaxation method for free boundary problem with unilateral obstacle[J]. International Journal of Computer Mathematics, 2021, 98(4): 671-689. doi: 10.1080/00207160.2020.1777402
    [18] 张茂林, 冉静, 张守贵. 具有滑动边界条件Stokes问题的自适应Uzawa块松弛算法[J]. 应用数学和力学, 2021, 42(2): 188-198. doi: 10.21656/1000-0887.410170

    ZHANG Maolin, RAN Jing, ZHANG Shougui. A self-adaptive Uzawa block relaxation method for Stokes problems with slip boundary conditions[J]. Applied Mathematics and Mechanics, 2021, 42(2): 188-198. (in Chinese) doi: 10.21656/1000-0887.410170
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  488
  • HTML全文浏览量:  164
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-24
  • 修回日期:  2023-04-24
  • 刊出日期:  2023-08-01

目录

    /

    返回文章
    返回