留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含孔板微通道内随流气泡运动的两相格子Boltzmann模拟

丁弘毅 王治云 赵敬帅 王楠 娄钦

丁弘毅, 王治云, 赵敬帅, 王楠, 娄钦. 含孔板微通道内随流气泡运动的两相格子Boltzmann模拟[J]. 应用数学和力学, 2024, 45(1): 97-109. doi: 10.21656/1000-0887.440099
引用本文: 丁弘毅, 王治云, 赵敬帅, 王楠, 娄钦. 含孔板微通道内随流气泡运动的两相格子Boltzmann模拟[J]. 应用数学和力学, 2024, 45(1): 97-109. doi: 10.21656/1000-0887.440099
DING Hongyi, WANG Zhiyun, ZHAO Jingshuai, WANG Nan, LOU Qin. The 2-Phase Lattice Boltzmann Simulation of Flow-Following Bubble Movement Through Microchannels in Orifice Plates[J]. Applied Mathematics and Mechanics, 2024, 45(1): 97-109. doi: 10.21656/1000-0887.440099
Citation: DING Hongyi, WANG Zhiyun, ZHAO Jingshuai, WANG Nan, LOU Qin. The 2-Phase Lattice Boltzmann Simulation of Flow-Following Bubble Movement Through Microchannels in Orifice Plates[J]. Applied Mathematics and Mechanics, 2024, 45(1): 97-109. doi: 10.21656/1000-0887.440099

含孔板微通道内随流气泡运动的两相格子Boltzmann模拟

doi: 10.21656/1000-0887.440099
详细信息
    作者简介:

    丁弘毅(1998—),男,硕士生(E-mail: 1018522201@qq.com)

    通讯作者:

    王治云(1981—),男,副教授,博士(通讯作者. E-mail: wangzhiyun@usst.edu.cn)

  • 中图分类号: O373; O357

The 2-Phase Lattice Boltzmann Simulation of Flow-Following Bubble Movement Through Microchannels in Orifice Plates

  • 摘要: 带有气泡的两相流系统存在于各种工业过程中,涉及复杂的相界面变化,但气泡在管道中伴随液相流动时,通过孔板的运动过程尚未有充分的研究结果.相场格子Boltzmann模型在模拟复杂界面方面具有优势,适合研究气泡两相流在含孔板微通道内的运动,分析We数、气泡相对大小和孔板表面润湿性等因素对气泡动力学特性的影响.数值计算结果显示,随着We数增加,气泡表面张力减小,导致其穿过孔板结构时更易被撕裂,峰值速度降低.在研究的参数范围内存在两个临界直径比,这两个临界值将气泡通过孔板的运动分成三种形态,而且临界直径比会随We数的增加而减小.另外,随着接触角的增大,孔板表面对气体的吸附能力加强,气泡与孔板表面的接触面积增加,引起穿过孔板气泡的质量减少和气泡通过的速度增加.
  • 图  1  模型示意图

    Figure  1.  Schematic of the physical model

    图  2  Laplace验证

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  Verification of Laplace's law

    图  3  润湿边界对毛细管侵入的模拟图

    Figure  3.  Simulation of capillary invasion by wetting boundary

    图  4  气泡进入孔板和离开孔板时,不同网格下的气泡轮廓

    Figure  4.  Snapshots of the bubble contour under different grids for the bubble entering and leaving the pore plate

    图  5  网格独立性验证

    Figure  5.  Grid independence verification

    图  6  d/D=0.533 33的气泡通过孔板的动态行为

    Figure  6.  Dynamic behaviors of the bubble with d/D=0.533 33 through the orifice plate

    图  7  气液速度随无量纲时间t*的变化

    Figure  7.  Variations with dimensionless time t*

    图  8  不同1/Wed/D下气泡通过孔板的动态行为

    Figure  8.  Dynamic behaviors of the bubble through the pore plate at different 1/We and d/D values

    图  9  气泡运动过程中在不同d/D下几种运动参数随We数的变化

    Figure  9.  Changes of several motion parameters with the We number at different d/D values during bubble movement

    图  10  气泡通过不同润湿性孔板动态行为

    Figure  10.  Dynamic behaviors of the bubble through pore plates with different wettabilities

    图  11  气泡运动参数随孔板润湿性变化

    Figure  11.  Bubble movement parameters changing with different wettabilities of the pore plate

  • [1] LIANG H, CHAI Z H, SHI B C, et al. Phase-field-based lattice Boltzmann model for axisymmetric multiphase flows[J]. Physical Review E, 2014, 90(6): 063311. doi: 10.1103/PhysRevE.90.063311
    [2] CHEN Z, SHU C, TAN D, et al. Simplified multiphase lattice Boltzmann method for simulating multiphase flows with large density ratios and complex interfaces[J]. Physical Review E, 2018, 98(6): 063314. doi: 10.1103/PhysRevE.98.063314
    [3] SHI J, MA Q, CHEN Z. Numerical study on bubble motion in pore structure under microgravity using the lattice Boltzmann method[J]. Microgravity Science and Technology, 2019, 31(2): 207-222. doi: 10.1007/s12217-019-9681-6
    [4] 严裕, 娄钦, 陈家豪. 双液滴在具有接触角滞后性微通道内的运动行为研究[J]. 应用数学和力学, 2023, 44(3): 304-318. doi: 10.21656/1000-0887.430165

    YAN Yu, LOU Qin, CHEN Jiahao. Lattice Boltzmann study on the motion of dual droplets in microchannels with contact angle hysteresis[J]. Applied Mathematics and Mechanics, 2023, 44(3): 304-318. (in Chinese)) doi: 10.21656/1000-0887.430165
    [5] 梁佳, 高明, 陈露, 等. 基于格子Boltzmann方法的液滴撞击具有不同润湿性孔板的研究[J]. 应用数学和力学, 2022, 43(1): 63-76. doi: 10.21656/1000-0887.420076

    LIANG Jia, GAO Ming, CHEN Lu, et al. Study on droplets impacting on orifice plates with different wettabilities based on the lattice Boltzmann method[J]. Applied Mathematics and Mechanics, 2022, 43(1): 63-76. (in Chinese)) doi: 10.21656/1000-0887.420076
    [6] HALLMARK B, CHEN C H, DAVIDSON J F. Experimental and simulation studies of the shape and motion of an air bubble contained in a highly viscous liquid flowing through an orifice constriction[J]. Chemical Engineering Science, 2019, 206: 272-288. doi: 10.1016/j.ces.2019.04.043
    [7] DAWSON G, HANER E, JUEL A. Extreme deformation of capsules and bubbles flowing through a localised constriction[J]. Procedia IUTAM, 2015, 16: 22-32. doi: 10.1016/j.piutam.2015.03.004
    [8] LOSI G, POESIO P. An experimental investigation on the effect of viscosity on bubbles moving in horizontal and slightly inclined pipes[J]. Experimental Thermal and Fluid Science, 2016, 75: 77-88. doi: 10.1016/j.expthermflusci.2016.01.010
    [9] WU Y, FANG S, DAI C, et al. Investigation on bubble snap-off in 3-D pore-throat micro-structures[J]. Journal of Industrial and Engineering Chemistry, 2017, 54: 69-74. doi: 10.1016/j.jiec.2017.05.019
    [10] CHAI Z, SHI B, GUO Z. A multiple-relaxation-time lattice Boltzmann model for general nonlinear anisotropic convection-diffusion equations[J]. Journal of Scientific Computing, 2016, 69(1): 355-390. doi: 10.1007/s10915-016-0198-5
    [11] INAMURO T, OGATA T, TAJIMA S, et al. A lattice Boltzmann method for incompressible two-phase flows with large density differences[J]. Journal of Computational Physics, 2004, 198(2): 628-644. doi: 10.1016/j.jcp.2004.01.019
    [12] YI J, XING H. Pore-scale simulation of effects of coal wettability on bubble-water flow in coal cleats using lattice Boltzmann method[J]. Chemical Engineering Science, 2017, 161: 57-66. doi: 10.1016/j.ces.2016.12.016
    [13] SANKARANARAYANAN K, SHAN X, KEVREKIDIS I G, et al. Bubble flow simulations with the lattice Boltzmann method[J]. Chemical Engineering Science, 1999, 54(21): 4817-4823. doi: 10.1016/S0009-2509(99)00199-2
    [14] YUAN P, SCHAEFER L. Equations of state in a lattice Boltzmann model[J]. Physics of Fluids, 2006, 18(4): 042101. doi: 10.1063/1.2187070
    [15] LEE T, LIN C L. A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio[J]. Journal of Computational Physics, 2005, 206(1): 16-47. doi: 10.1016/j.jcp.2004.12.001
    [16] LEE H G, KIM J. An efficient numerical method for simulating multiphase flows using a diffuse interface model[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 423: 33-50. doi: 10.1016/j.physa.2014.12.027
    [17] LIANG H, SHI B C, CHAI Z H. Lattice Boltzmann modeling of three-phase incompressible flows[J]. Physical Review E, 2016, 93(1): 013308. doi: 10.1103/PhysRevE.93.013308
    [18] LOU Q, YAN Y, XU H. Numerical simulation of bubble rising in porous media using lattice Boltzmann method[J]. Journal of Applied Physics, 2022, 132(19): 194703. doi: 10.1063/5.0127791
    [19] LIANG H, XU J R, CHEN J X, et al. Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows[J]. Physical Review E, 2018, 97(3): 033309. doi: 10.1103/PhysRevE.97.033309
    [20] ZHANG S, TANG J, WU H. Wetting boundary schemes in modified phase-field lattice Boltzmann method for binary fluids with large density ratios[J]. Computers & Mathematics With Applications, 2022, 113: 243-253.
    [21] YI T, YANG G, WANG B, et al. Dynamics of a gas bubble penetrating through porous media[J]. Physics of Fluids, 2022, 34(1): 012103. doi: 10.1063/5.0076298
    [22] MORAN H R, MAGNINI M, MARKIDES C N, et al. Inertial and buoyancy effects on the flow of elongated bubbles in horizontal channels[J]. International Journal of Multiphase Flow, 2021, 135: 103468.
  • 加载中
图(11)
计量
  • 文章访问数:  321
  • HTML全文浏览量:  109
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-10
  • 修回日期:  2023-07-24
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回