留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

凹腔稳燃超声速燃烧火焰闪回不稳定性的数值研究

肖烨炘 金台

肖烨炘, 金台. 凹腔稳燃超声速燃烧火焰闪回不稳定性的数值研究[J]. 应用数学和力学, 2023, 44(9): 1042-1053. doi: 10.21656/1000-0887.440103
引用本文: 肖烨炘, 金台. 凹腔稳燃超声速燃烧火焰闪回不稳定性的数值研究[J]. 应用数学和力学, 2023, 44(9): 1042-1053. doi: 10.21656/1000-0887.440103
XIAO Yexin, JIN Tai. Numerical Analysis of Flame Flashback and Instability in Cavity-Stabilized Supersonic Combustion[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1042-1053. doi: 10.21656/1000-0887.440103
Citation: XIAO Yexin, JIN Tai. Numerical Analysis of Flame Flashback and Instability in Cavity-Stabilized Supersonic Combustion[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1042-1053. doi: 10.21656/1000-0887.440103

凹腔稳燃超声速燃烧火焰闪回不稳定性的数值研究

doi: 10.21656/1000-0887.440103
基金项目: 

国家自然科学基金项目 52076194

详细信息
    作者简介:

    肖烨炘(1999—),男,博士生(E-mail: xiao_yexin@zju.edu.cn)

    通讯作者:

    金台(1988—),男,副教授(通讯作者. E-mail: jintai@zju.edu.cn)

  • 中图分类号: O354.4

Numerical Analysis of Flame Flashback and Instability in Cavity-Stabilized Supersonic Combustion

  • 摘要: 针对等直截面超燃冲压发动机燃烧室中火焰闪回低频燃烧振荡现象,采用延迟分离涡模拟(DDES)的混合RANS/LES方法结合PaSR湍流燃烧模型进行了三维模拟研究.计算得到了完整的燃烧振荡周期,与实验中的低频燃烧振荡现象较为一致.低频燃烧振荡周期可分为凹腔火焰稳定、火焰回传、火焰吹熄3个阶段.通过分析低频燃烧振荡周期中不同阶段的燃烧流动状态,给出了可能的低频燃烧振荡的形成机制.研究结果表明,在整个低频燃烧振荡周期中燃烧室内没有发生热壅塞,燃烧室提供的背压和燃烧释热是燃烧室内形成低频燃烧振荡的关键.
  • 图  1  模型燃烧室结构示意图(单位: mm)

    Figure  1.  Schematic of the model combustion chamber(unit: mm)

    图  2  冷态流场上壁面静压分布

    Figure  2.  Static pressure distribution on the upper wall surface in the cold flow field

    图  3  中间截面温度云图随时间变化(Δt=0.2 ms)

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  Contours of temperature in the mid plane at various moments (Δt=0.2 ms)

    图  4  三维火焰面结构,温度着色的当量混合分数等值面

    Figure  4.  Iso-surfaces of the stoichiometric mixture colored by temperature

    图  5  燃烧室内密度纹影、Ma数、压力、温度云图(t=t0, t0+0.4 ms)

    Figure  5.  Contours of $|\nabla \rho| $, Ma, pressure, temperature in the combustion chamber (t=t0, t0+0.4 ms)

    图  6  燃烧室内密度纹影、Ma数、压力、温度云图(t=t0+1.6 ms, t0+2.0 ms)

    Figure  6.  Contours of $|\nabla \rho| $, Ma, pressure, temperature in the combustion chamber (t=t0+1.6 ms, t0+2.0 ms)

    图  7  燃烧室内火焰索引因子对比图

    Figure  7.  Comparison diagram of flame index in the combustion chamber

    图  8  燃烧室内测点示意图

    Figure  8.  Schematic diagram of the probe in the combustion chamber

    图  9  测点压力波动测量结果

    Figure  9.  Probe pressure fluctuation measurement results

    图  10  燃烧室内激波示意图

    Figure  10.  Schematic diagram of the shock wave in the combustion chamber

    表  1  隔离段入口及燃料喷口参数

    Table  1.   Isolator inlet and jet parameters

    pressure P/kPa velocity v/(m/s) temperature T/K YO2 YH20 YCO2 YN2 YC2H4
    inlet 89.12 1 323 719.3 0.233 8 0.101 6 0.062 2 0.602 4 0
    jet 847.28 315 265.2 0 0 0 0 1
    下载: 导出CSV
  • [1] 王强, 徐涛, 姚永涛. 高超声速流动与换热数值仿真研究[J]. 应用数学和力学, 2022, 43(10): 1105-1112. doi: 10.21656/1000-0887.420346

    WANG Qiang, XU Tao, YAO Yongtao. Numerical study on hypersonic flow and aerodynamic heating[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1105-1112. (in Chinese) doi: 10.21656/1000-0887.420346
    [2] CHOUBEY G, DEUARAJAN Y, HUANG W, et al. Recent advances in cavity-based scramjet engine: a brief review[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13895-13909. doi: 10.1016/j.ijhydene.2019.04.003
    [3] CHOUBEY G, YUVARAJAN D, HUANG W, et al. Hydrogen fuel in scramjet engines: a brief review[J]. International Journal of Hydrogen Energy, 2020, 45(33): 16799-16815. doi: 10.1016/j.ijhydene.2020.04.086
    [4] SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84: 1-28. doi: 10.1016/j.paerosci.2016.04.001
    [5] DING Y, YUE X, CHEN G, et al. Review of control and guidance technology on hypersonic vehicle[J]. Chinese Journal of Aeronautics, 2022, 35(7): 1-18. doi: 10.1016/j.cja.2021.10.037
    [6] LIU Q, BACCARELLA D, LEE T. Review of combustion stabilization for hypersonic airbreathing propulsion[J]. Progress in Aerospace Sciences, 2020, 119: 100636. doi: 10.1016/j.paerosci.2020.100636
    [7] BEN-YAKAR A, HANSON R K. Cavity flame-holders for ignition and flame stabilization in scramjets: an overview[J]. Journal of Propulsion and Power, 2001, 17(4): 869-877. doi: 10.2514/2.5818
    [8] WANG Z, WANG H, SUN M. Review of cavity-stabilized combustion for scramjet applications[J]. Proceedings of the Institution of Mechanical Engineers (Part G): Journal of Aerospace Engineering, 2014, 228(14): 2718-2735. doi: 10.1177/0954410014521172
    [9] OUYANG H, LIU W, SUN M. The large-amplitude combustion oscillation in a single-side expansion scramjet combustor[J]. Acta Astronautica, 2015, 117: 90-98. doi: 10.1016/j.actaastro.2015.07.016
    [10] SELEZNEV R K, SURZHIKOV S T, SHANG J S. A review of the scramjet experimental data base[J]. Progress in Aerospace Sciences, 2019, 106: 43-70. doi: 10.1016/j.paerosci.2019.02.001
    [11] WANG H, WANG Z, SUN M. Experimental study of oscillations in a scramjet combustor with cavity flameholders[J]. Experimental Thermal and Fluid Science, 2013, 45: 259-263. doi: 10.1016/j.expthermflusci.2012.10.013
    [12] ZHAO G Y, SUN M B, WU J S, et al. Investigation of flame flashback phenomenon in a supersonic crossflow with ethylene injection upstream of cavity flameholder[J]. Aerospace Science and Technology, 2019, 87: 190-206. doi: 10.1016/j.ast.2019.02.018
    [13] JEONG S M, LEE J H, CHOI J Y. Numerical investigation of low-frequency instability and frequency shifting in a scramjet combustor[J]. Proceedings of the Combustion Institute, 2022, 39(3): 3107-3116.
    [14] NAKAYA S, YAMANA H, TSUE M. Experimental investigation of ethylene/air combustion instability in a model scramjet combustor using image-based methods[J]. Proceedings of the Combustion Institute, 2021, 38(3): 3869-3680. doi: 10.1016/j.proci.2020.07.129
    [15] LAURENCE S, KARL S, SCHRAMM J M, et al. Transient fluid-combustion phenomena in a model scramjet[J]. Journal of Fluid Mechanics, 2013, 722: 85-120. doi: 10.1017/jfm.2013.56
    [16] MA F, LI J, YANG V, et al. Thermoacoustic flow instability in a scramjet combustor[C]//Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2012.
    [17] IM S K, DO H. Unstart phenomena induced by flow choking in scramjet inlet-isolators[J]. Progress in Aerospace Sciences, 2018, 97: 1-21. doi: 10.1016/j.paerosci.2017.12.001
    [18] DU G M, YE T, LE J L, et al. Experimental investigation of effects of air throttling on combustion characteristics in a kerosene-fueled scramjet at Ma7[J]. Acta Astronautica, 2023, 203: 447-453. doi: 10.1016/j.actaastro.2022.12.025
    [19] 李文栋, 张文普. 预混燃烧边界层回火的数理模型及研究进展[J]. 应用数学和力学, 2023, 44(1): 36-51. doi: 10.21656/1000-0887.430012

    LI Wendong, ZHANG Wenpu. The mathematical model and research progress of the boundary layer flashback in premixed combustion[J]. Applied Mathematics and Mechanics, 2023, 44(1): 36-51. (in Chinese) doi: 10.21656/1000-0887.430012
    [20] ZHAO G Y, SUN M B, SONG X L, et al. Experimental investigations of cavity parameters leading to combustion oscillation in a supersonic crossflow[J]. Acta Astronautica, 2019, 155: 255-263. doi: 10.1016/j.actaastro.2018.12.011
    [21] FROST M A, GANGURDE D Y, PAULL A, et al. Boundary-layer separation due to combustion-induced pressure rise in a supersonic flow[J]. AIAA Journal, 2009, 47(4): 1050-1053. doi: 10.2514/1.40868
    [22] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]//Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. 1992.
    [23] SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20: 181-195. doi: 10.1007/s00162-006-0015-0
    [24] SPALART P. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]//Advances in DNS/LES: Proceedings of the First AFOSR International Conference on DNS/LES. Ruston, Louisiana, USA, 1997.
    [25] GOLOVITCHEV V I, NORDIN N, JARNICKI R, et al. 3-D diesel spray simulations using a new detailed chemistry turbulent combustion model[J]. Journal of Fuels and Lubricants, 2000, 109: 1391-1405.
    [26] KORNEV N, SHCHUKIN E, TARANOV E, et al. Development and implementation of inflow generator for LES and DNS applications in OpenFOAM[C]//Proceedings of the Open Source CFD International Conference. 2009.
    [27] SINGH D, JACHIMOWSKI C J. Quasiglobal reaction model for ethylene combustion[J]. AIAA Journal, 1994, 32(1): 213-216. doi: 10.2514/3.11972
    [28] 赵国焱. 超声速气流中火焰闪回诱发与火焰传播机制研究[D]. 博士学位论文. 长沙: 国防科技大学, 2019.

    ZHAO Guoyan. On the excitation of flame flashback and flame propagation mechanism in supersonic flow[D]. PhD Thesis. Changsha: National University of Defense Technology, 2019. (in Chinese)
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  492
  • HTML全文浏览量:  180
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-12
  • 修回日期:  2023-07-21
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回