留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数值流形法的降雨入渗与坡面径流耦合算法研究

陈远强 郑宏 屈新

陈远强, 郑宏, 屈新. 基于数值流形法的降雨入渗与坡面径流耦合算法研究[J]. 应用数学和力学, 2023, 44(12): 1499-1511. doi: 10.21656/1000-0887.440115
引用本文: 陈远强, 郑宏, 屈新. 基于数值流形法的降雨入渗与坡面径流耦合算法研究[J]. 应用数学和力学, 2023, 44(12): 1499-1511. doi: 10.21656/1000-0887.440115
CHEN Yuanqiang, ZHENG Hong, QU Xin. A Coupling Analysis of Rainfall Infiltration and Slope Surface Runoff Based on the Numerical Manifold Method[J]. Applied Mathematics and Mechanics, 2023, 44(12): 1499-1511. doi: 10.21656/1000-0887.440115
Citation: CHEN Yuanqiang, ZHENG Hong, QU Xin. A Coupling Analysis of Rainfall Infiltration and Slope Surface Runoff Based on the Numerical Manifold Method[J]. Applied Mathematics and Mechanics, 2023, 44(12): 1499-1511. doi: 10.21656/1000-0887.440115

基于数值流形法的降雨入渗与坡面径流耦合算法研究

doi: 10.21656/1000-0887.440115
(我刊编委郑宏来稿)
基金项目: 

国家自然科学基金项目 42107195

湖南省教育厅科研项目 21C0317

详细信息
    通讯作者:

    陈远强(1990—),男,讲师,博士(通讯作者. E-mail: whytscyq@163.com)

  • 中图分类号: O241; TV139.14

A Coupling Analysis of Rainfall Infiltration and Slope Surface Runoff Based on the Numerical Manifold Method

(Contributed by ZHENG Hong, M. AMM Editorial Board)
  • 摘要: 降雨时坡地的入渗-产流分析,是降雨型滑坡、泥石流等地质灾害机理研究中的重要课题之一. 为实现边坡降雨-入渗-产流的全过程数值模拟,进一步提高计算效率,考虑将降雨入渗面视作坡面径流与坡体渗流的内部域,基于一维运动波方程和二维压力水头格式的Richards方程建立耦合模型,并推导出其总体控制方程,采用数值流形法(numerical manifold method, NMM)实现其数值求解,通过编制相应的计算程序分析了边坡降雨产流过程. 数值分析结果表明:所建模型的计算结果与试验数据及前人模拟结果吻合良好,验证了该文模型及计算方法的有效性与可靠性;降雨强度越大,产流时间越早,坡面积水深度越大,对坡体内的水分分布影响范围越广. 研究表明,所建模型能真实反映边坡降雨-入渗-产流全过程,可为降雨诱发的各类地质灾害分析提供计算依据.
    1)  (我刊编委郑宏来稿)
  • 图  1  边坡降雨-入渗-产流示意图

    Figure  1.  The diagrammatic sketch of rainfall-infiltration-runoff of the slope

    图  2  NMM的覆盖系统

    Figure  2.  Cover systems of the NMM

    图  3  Abdul-Gillham试验计算几何模型

    Figure  3.  The geometric model for the Abdul-Gillham system

    图  4  Abdul-Gillham试验几何模型及数学覆盖

    Figure  4.  Geometric models and mathematical covers of the Abdul-Gillham system

    图  5  坡脚出流过程对比

    Figure  5.  Discharges at the base of the slope

    图  6  Smith试验计算几何模型

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  6.  The geometric model for the Smith system

    图  7  坡脚出流过程对比

    Figure  7.  Discharges at the base of the slope

    图  8  x=5.6 m剖面土体饱和度演化过程

    Figure  8.  Evolutions of the saturation degree along the profile for x=5.6 m

    图  9  均质边坡几何模型

    Figure  9.  The geometric model for the homogeneous slope

    图  10  土-水特征曲线及渗透性函数

    Figure  10.  The soil-water characteristic curve and the permeability function

    图  11  平衡条件下的坡面水位线

    Figure  11.  Flow depths of the slope

    图  12  坡脚出流过程

    Figure  12.  Discharges at the base of the slope

    图  13  降雨结束时刻工况1边坡压力水头分布

    Figure  13.  The pressure head distribution of the slope in case 1 at the end of rainfall

    图  14  降雨结束时刻工况1边坡表层压力水头分布(单位: m)

    Figure  14.  The pressure head distribution at the surface of the slope in case 1 at the end of rainfall (unit: m)

    表  1  降雨工况

    Table  1.   The rainfall intensities

    case number 1 2 3 4 5
    rainfall intensity I/(m/min) 2.502×10-3 2.085×10-3 1.668×10-3 1.251×10-3 8.340×10-4
    下载: 导出CSV
  • [1] 姚海林, 郑少河, 李文斌, 等. 降雨入渗对非饱和膨胀土边坡稳定性影响的参数研究[J]. 岩石力学与工程学报, 2002, 21(7): 1034-1039.

    YAO Hailin, ZHENG Shaohe, LI Wenbin, et al. Parametric study on the effect of rain infiltration on stability of unsaturated expansive soil slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(7): 1034-1039. (in Chinese)
    [2] 董建军, 王思萌, 杨晓萧, 等. 基于非饱和-饱和渗流的降雨入渗边坡稳定性分析[J]. 水利与建筑工程学报, 2018, 16(6): 99-104.

    DONG Jianjun, WANG Simeng, YANG Xiaoxiao, et al. Analysis of the rainfall infiltration on slope stability based on unsaturated-saturated seepage[J]. Journal of Water Resources and Architectural Engineering, 2018, 16(6): 99-104. (in Chinese)
    [3] XIONG X, SHI Z, XIONG Y, et al. Unsaturated slope stability around the Three Gorges Reservoir under various combinations of rainfall and water level fluctuation[J]. Engineering Geology, 2019, 261: 105231. doi: 10.1016/j.enggeo.2019.105231
    [4] WALLACH R, GRIGORIN G, RIVLIN J. The errors in surface runoff prediction by neglecting the relationship between infiltration rate and overland flow depth[J]. Journal of Hydrology, 1997, 200: 243-259. doi: 10.1016/S0022-1694(97)00017-6
    [5] 李根, 韩同春, 吴俊杨, 等. 基于有限体积法的地表径流与土壤水流耦合分析[J]. 浙江大学学报(工学版), 2022, 56(5): 947-955.

    LI Gen, HAN Tongchun, WU Junyang, et al. Coupled analysis on surface runoff and soil water movement by finite volume method[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(5): 947-955. (in Chinese)
    [6] MORITA M, YEN B C. Modeling of conjunctive two-dimensional surface-three-dimensional subsurface flows[J]. Journal of Hydraulic Engineering, 2002, 128(2): 184-200. doi: 10.1061/(ASCE)0733-9429(2002)128:2(184)
    [7] PANDAY S, HUYAKORN P S. A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow[J]. Advances in Water Resources, 2004, 27(4): 361-382. doi: 10.1016/j.advwatres.2004.02.016
    [8] 张培文, 刘德富, 郑宏, 等. 降雨条件下坡面径流和入渗耦合的数值模拟[J]. 岩土力学, 2004, 25(1): 109-113.

    ZHANG Peiwen, LIU Defu, ZHENG Hong, et al. Coupling numerical simulation of slope runoff and infiltration under rainfall conditions[J]. Rock and Soil Mechanics, 2004, 25(1): 109-113. (in Chinese)
    [9] 埃尔杜拉K S. 一个综合植被地表径流与饱和地下水流之间相互作用的数值模型[J]. 应用数学和力学, 2012, 33(7): 828-844. doi: 10.3879/j.issn.1000-0887.2012.07.004

    ERDURAN K S. An integrated numerical model for vegetated surface and saturated subsurface flow interaction[J]. Applied Mathematics and Mechanics, 2012, 33(7): 828-844. (in Chinese) doi: 10.3879/j.issn.1000-0887.2012.07.004
    [10] 朱磊, 田军仓, 孙骁磊. 基于全耦合的地表径流与土壤水分运动数值模拟[J]. 水科学进展, 2015, 26(3): 322-330.

    ZHU Lei, TIAN Juncang, SUN Xiaolei. A fully couple numerical simulation for surface runoff and soil water movement[J]. Advances in Water Science, 2015, 26(3): 322-330. (in Chinese)
    [11] 李尚辉, 刘代文, 阙云, 等. 坡面径流与大孔隙流耦合作用下边坡水分场参数敏感性分析[J]. 济南大学学报(自然科学版), 2023, 37(3): 264-272.

    LI Shanghui, LIU Daiwen, QUE Yun, et al. Parameter sensitivity analysis on slope water fields under slope runoffs and macropore flows coupling[J]. Journal of University of Jinan (Science and Technology), 2023, 37(3): 264-272. (in Chinese)
    [12] KOLLET S J, MAXWELL R M. Integrated surface-groundwater flow modeling: a free-surface overland flow boundary condition in a parallel groundwater flow model[J]. Advances in Water Resources, 2006, 29(7): 945-958. doi: 10.1016/j.advwatres.2005.08.006
    [13] 童富果, 田斌, 刘德富. 改进的斜坡降雨入渗与坡面径流耦合算法研究[J]. 岩土力学, 2008, 29(4): 1035-1040.

    TONG Fuguo, TIAN Bin, LIU Defu. A coupling analysis of slope runoff and infiltration under rainfall[J]. Rock and Soil Mechanics, 2008, 29(4): 1035-1040. (in Chinese)
    [14] WEILL S, MOUCHE E, PATIN J. A generalized Richards equation for surface/subsurface flow modelling[J]. Journal of Hydrology, 2009, 366(1/4): 9-20.
    [15] TIAN Dongfang, LIU Defu. A new integrated surface and subsurface flows model and its verification[J]. Applied Mathematical Modelling, 2011, 35: 3574-3586. doi: 10.1016/j.apm.2011.01.035
    [16] TIAN Dongfang, ZHENG Hong, LIU Defu. A 2D integrated FEM model for surface water-groundwater flow of slopes under rainfall condition[J]. Landslides, 2017, 14(2): 577-593. doi: 10.1007/s10346-016-0716-4
    [17] 王乐, 田东方. 边坡渗流与坡面径流联合求解三维有限元模型[J]. 人民珠江, 2019, 40(5): 24-29.

    WANG Le, TIAN Dongfang. 3D FEM integrated model for seepage and runoff process[J]. Pearl River, 2019, 40(5): 24-29. (in Chinese)
    [18] LIU Gang, TONG Fuguo, TIAN Bin. A finite element model for simulating surface run-off and unsaturated seepage flow in the shallow subsurface[J]. Hydrological Processes, 2019, 33(26): 3378-3390. doi: 10.1002/hyp.13564
    [19] SHI Genhua. Manifold method of material analysis[C]//Transactions of the 9th Army Conference on Applied Mathematics and Computing. US Army Research Office, 1991.
    [20] 陈远强, 杨永涛, 郑宏, 等. 饱和-非饱和渗流的数值流形法研究与应用[J]. 岩土工程学报, 2019, 41(2): 338-347.

    CHEN Yuanqiang, YANG Yongtao, ZHENG Hong, et al. Saturated-unsaturated seepage by numerical manifold method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 338-347. (in Chinese)
    [21] LIN Shan, ZHENG Hong, ZHANG Zhihong, et al. Evaluation of permeability of soil & rock aggregate using meshless numerical manifold method[J]. Computers and Geotechnics, 2022, 151: 104953. doi: 10.1016/j.compgeo.2022.104953
    [22] CHEN Yuanqiang, ZHENG Hong, YIN Boyuan, et al. The MLS-based numerical manifold method for Darcy flow in heterogeneous porous media[J]. Engineering Analysis With Boundary Elements, 2023, 148: 220-242. doi: 10.1016/j.enganabound.2022.12.030
    [23] RICHARDS L A. Capillary conduction of liquids through porous mediums[J]. Journal of Applied Physics, 1931, 1: 318-333. http://ci.nii.ac.jp/naid/10006144118
    [24] 朱帅润, 李绍红, 钟彩尹, 等. 时间分数阶的非饱和渗流数值分析及其应用[J]. 应用数学和力学, 2022, 43(9): 966-975. doi: 10.21656/1000-0887.420334

    ZHU Shuairun, LI Shaohong, ZHONG Caiyin, et al. Numerical analysis of time fractional-order unsaturated flow and its application[J]. Applied Mathematics and Mechanics, 2022, 43(9): 966-975. (in Chinese) doi: 10.21656/1000-0887.420334
    [25] 刘能胜, 曹恒明. 通用函数边界下潜水非稳定流模型的解及应用[J]. 应用数学和力学, 2020, 41(9): 1048-1056. doi: 10.21656/1000-0887.400371

    LIU Nengsheng, CAO Hengming. Solution and application of the transient phreatic flow motion model under general function boundary[J]. Applied Mathematics and Mechanics, 2020, 41(9): 1048-1056. (in Chinese) doi: 10.21656/1000-0887.400371
    [26] 郑素佩, 李霄, 赵青宇, 等. 求解二维浅水波方程的旋转混合格式[J]. 应用数学和力学, 2022, 43(2): 176-186. doi: 10.21656/1000-0887.400124

    ZHENG Supei, LI Xiao, ZHAO Qingyu, et al. A rotated mixed scheme for solving 2D shallow water equation[J]. Applied Mathematics and Mechanics, 2022, 43(2): 176-186. (in Chinese) doi: 10.21656/1000-0887.400124
    [27] LIGHTHILL M J, WHITHAM G B. On kinematic waves: flood movement in long rivers[J]. Proceedings of the Royal Society of London (Series A): Mathematical and Physical Sciences, 1955, 229(1178): 281-316. doi: 10.1098/rspa.1955.0088
    [28] PONCE V M, SIMONS D B, LI R M. Applicability of kinematic and diffusion models[J]. Journal of the Hydraulics Division, 1978, 104(3): 353-360. doi: 10.1061/JYCEAJ.0004958
    [29] 文康, 金管生, 李蝶娟. 地表径流过程的数学模拟[M]. 北京: 水利电力出版社, 1991.

    WEN Kang, JIN Guansheng, LI Diejuan. Mathematical Simulation of Surface Runoff Processes[M]. Beijing: China Water & Power Press, 1991. (in Chinese)
    [30] SMITH R E, WOOLHISER D A. Mathematical simulation of infiltrating watersheds[R]. Colorado: Colorado State University, 1971.
    [31] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [32] MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522. doi: 10.1029/WR012i003p00513
    [33] GARDNER W R. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table[J]. Soil science, 1958, 85(4): 228-232. doi: 10.1097/00010694-195804000-00006
    [34] BROOKS R A, COREY A T. Hydraulic properties of porous media[R]. Hydrology Papers, 1964.
    [35] ABDUL A S, GILLHAM R W. Laboratory studies of the effects of the capillary fringe on streamflow generation[J]. Water Resources Research, 1984, 20(6): 1-18.
    [36] VANDERKWAAK J E. Numerical simulation of flow and chemical transport in integrated surface-subsurface hydrologic systems[D]. Waterloo: University of Waterloo, 1999.
    [37] SINGH V, BHALLAMUDI S M. Conjunctive surface-subsurface modeling of overland flow[J]. Advances in Water Resources, 1998, 21(7): 567-579. doi: 10.1016/S0309-1708(97)00020-1
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  367
  • HTML全文浏览量:  112
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 修回日期:  2023-06-15
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回