留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层富勒烯薄膜脱盐应用的分子动力学模拟研究

刘思奕 王丽雅 夏骏 王睿杰 唐淳 王成原

刘思奕, 王丽雅, 夏骏, 王睿杰, 唐淳, 王成原. 单层富勒烯薄膜脱盐应用的分子动力学模拟研究[J]. 应用数学和力学, 2023, 44(12): 1491-1498. doi: 10.21656/1000-0887.440118
引用本文: 刘思奕, 王丽雅, 夏骏, 王睿杰, 唐淳, 王成原. 单层富勒烯薄膜脱盐应用的分子动力学模拟研究[J]. 应用数学和力学, 2023, 44(12): 1491-1498. doi: 10.21656/1000-0887.440118
LIU Siyi, WANG Liya, XIA Jun, WANG Ruijie, TANG Chun, WANG Chengyuan. Molecular Dynamics Simulation of Monolayer Fullerene Membranes for Desalination[J]. Applied Mathematics and Mechanics, 2023, 44(12): 1491-1498. doi: 10.21656/1000-0887.440118
Citation: LIU Siyi, WANG Liya, XIA Jun, WANG Ruijie, TANG Chun, WANG Chengyuan. Molecular Dynamics Simulation of Monolayer Fullerene Membranes for Desalination[J]. Applied Mathematics and Mechanics, 2023, 44(12): 1491-1498. doi: 10.21656/1000-0887.440118

单层富勒烯薄膜脱盐应用的分子动力学模拟研究

doi: 10.21656/1000-0887.440118
基金项目: 

国家自然科学基金项目 12102151

国家自然科学基金项目 12072134

国家自然科学基金项目 12102422

江苏省博士后基金 2021K113B

详细信息

Molecular Dynamics Simulation of Monolayer Fullerene Membranes for Desalination

  • 摘要: 海水淡化是最有希望解决全球淡水资源短缺的有效方案之一,纳米技术的进步推动了各类用于水净化的纳米多孔膜的发展. 理论和实验研究发现了纳米多孔石墨烯的超高水透过和盐离子拒绝率. 然而精确创建、控制纳米级孔隙的大小和分布的操作难度极大地限制了纳米膜材料的实际化应用. 通过分子动力学模拟发现具有均匀有序纳米孔排列准四边形结构(quasi-tetragonal phase, qTP)的单层富勒烯(C60)薄膜在海水淡化方面的巨大潜力,在保证100%阻盐率的同时,与传统聚合物过滤膜相比,单层富勒烯薄膜展示出卓越的透水性. 从原子尺度系统地研究了单层富勒烯薄膜结构的筛分机制,发现钠离子、氯离子与水分子相比,在穿膜运输过程中有大的能量障碍. 结果表明,单层富勒烯薄膜是一种很有优势的海水淡化膜.
  • 图  1  模型示意图

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  Schematic of the simulation model

    图  2  单层晶体结构顶部视图

    Figure  2.  Top views of the monolayer crystal structure

    图  3  两种结构的富勒烯薄膜水通量和离子拒绝率

    Figure  3.  Water fluxes and ion rejection rates of the monolayer crystal structures

    图  4  各类膜的离子排斥性能和透水性能

    Figure  4.  The performance chart for qTPC60 vs. various membranes

    图  5  体相水中,Na+离子和Cl-离子的径向分布

    Figure  5.  The radial distribution of Na+ and Cl- ions in bulk water

    图  6  水分子在不同位置与qTPC60的相互作用能

    Figure  6.  The interaction energy of water molecules with qTPC60 at different locations (a) qTPC60 (b) CNT(6, 6) (c) NPG

    图  7  qTPC60与CNT(6, 6)、NPG内部密度云图以及水输运示意图

    Figure  7.  Oxygen density contours and water transport of qTPC60, CNT(6, 6) and NPG

    图  8  qTPC60、CNT(6, 6)及NPG对比

    Figure  8.  The qTPC60、CNT(6, 6) and NPG comparison

    表  1  离子、水分子(SPC/E)和C60的LJ参数以及电荷信息

    Table  1.   The LJ parameters and partial charges for ions, water molecules (SPC/E), and carbon atoms of C60 and graphene

    site σ/nm ε/(kcal/mol) q/e
    ion Na+ 0.333 0.002 772 1.0
    Cl- 0.442 0.117 8 -1.0
    water H 0 0 0.423 8
    O 0.317 0.153 5 -0.847 6
    C60 C 0.340 0.086 0
    graphene C 0.340 0.086 0
    下载: 导出CSV

    表  2  第一、第二水化壳层在体相水、qTPC60内部的配位数以及相应脱水数目

    Table  2.   Coordination numbers in the 1st and 2nd hydration shells and reduced numbers

    Bulk N qTPC60 N reduced number Nr
    Nc1 5.6 2.0 3.6
    Nc2 17.1 3.2 13.9
    下载: 导出CSV
  • [1] ANDREEVA D V, TRUSHIN M, NIKITINA A. Two-dimensional adaptive membranes with programmable water and ionicchannels[J]. Nature Nanotechnology, 2021, 16(2): 174-180. doi: 10.1038/s41565-020-00795-y
    [2] WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1(5): 16018. doi: 10.1038/natrevmats.2016.18
    [3] ELIMELECH M, PHILLIP W A. The future of seawater desalination: energy, technology, and the environment[J]. Science, 2011, 333(6034): 712-717.
    [4] GEISE G M, PARK H B, SAGLE A C. Water permeability and water/salt selectivity tradeoff in polymers for desalination[J]. Journal of Membrane Science, 2011, 369(1/2): 130-138.
    [5] CORRY B. Water and ion transport through functionalised carbon nanotubes: implications for desalination technology[J]. Energy Environment Science, 2011, 4(3): 751-759. doi: 10.1039/c0ee00481b
    [6] SURWADE S P, SMIRNOV S N, VLASSIOUK I V. Graphynes for water desalination and gas separation[J]. Nature Nanotechnology, 2015, 10(5): 459-464. doi: 10.1038/nnano.2015.37
    [7] QIU H, XUE M M, SHEN C. Graphynes for water desalination and gas separation[J]. Advanced Materials, 2019, 31(42): e1803772. doi: 10.1002/adma.201803772
    [8] YANG Y B, YANG X D, LIANG L. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration[J]. Science, 2019, 364(6445): 1057. doi: 10.1126/science.aau5321
    [9] O'HERN S C, BOUTILIER M S H, IDROBO J C. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes[J]. Nano Letter, 2014, 14(3): 1234-1241. doi: 10.1021/nl404118f
    [10] COHEN-TANUGI D, GROSSMAN J C. Water desalination across nanoporous graphene[J]. Nano Letter, 2012, 12(7): 3602-3608. doi: 10.1021/nl3012853
    [11] KONATHAM D, YU J, HO T A, et al. Simulation insights for graphene-based water desalination membranes[J]. Langmuir, 2013, 29(38): 11884-11897. doi: 10.1021/la4018695
    [12] SINT K, WANG B Y, KRAL P. Selective ion passage through functionalized graphene nanopores[J]. Journal of the American Chemical Society, 2008, 130(49): 16448-16449. doi: 10.1021/ja804409f
    [13] FENG J D, GRAF M, LIU K. Single-layer MoS2 nanopores as nanopower generators[J]. Nature, 2016, 536(7615): 197-200. doi: 10.1038/nature18593
    [14] CAO Z L, LIU V, FARIMANI A B. Water desalination with two-dimensional metal-organic framework membranes[J]. Nano Letter, 2019, 19(12): 8638-8643. doi: 10.1021/acs.nanolett.9b03225
    [15] HOU L, CUI X, GUAN B, et al. Synthesis of a monolayer fullerene network[J]. Nature, 2022, 606(7914): 507-510. doi: 10.1038/s41586-022-04771-5
    [16] PENG B. Monolayer fullerene networks as photocatalysts for overall water splitting[J]. Journal of the American Chemical Society, 2022, 144(43): 19921-19931. doi: 10.1021/jacs.2c08054
    [17] PENG B. Stability and strength of monolayer polymeric C60[J]. Nano Letter, 2023, 23(2): 652-658. doi: 10.1021/acs.nanolett.2c04497
    [18] YU L F, XU J Y, PENG B, et al. Anisotropic optical, mechanical, and thermoelectric properties of two-dimensional fullerene networks[J]. Journal of Physical Chemistry Letters, 2022, 13(50): 11622-11629. doi: 10.1021/acs.jpclett.2c02702
    [19] YING P H, DONG H K, LIANG T, et al. Atomistic insights into the mechanical anisotropy and fragility of monolayer fullerene networks using quantum mechanical calculations and machine-learning molecular dynamics simulations[J]. Extreme Mechanics Letters, 2023, 58: 101929. doi: 10.1016/j.eml.2022.101929
    [20] KAYAL A, CHANDRA A. Exploring the structure and dynamics of nano-confined water molecules using molecular dynamics simulations[J]. Molecular Simulation, 2015, 41(5/6): 463-470.
    [21] SHAO Q, ZHOU J, LU L, et al. Anomalous hydration shell order of Na+ and K+ inside carbon nanotubes[J]. Nano Letter, 2009, 9(3): 989-994. doi: 10.1021/nl803044k
    [22] ZHANG X, WEI M, XU F, et al. Pressure-dependent ion rejection in nanopores[J]. Journal of Physical Chemistry C, 2020, 124(37): 20498-20505. doi: 10.1021/acs.jpcc.0c03641
    [23] ZHU F Q, TAJKHORSHID E, SCHULTEN K. Pressure-induced water transport in membrane channels studied by molecular dynamics[J]. Biophysical Journal, 2002, 83(1): 154-160. doi: 10.1016/S0006-3495(02)75157-6
    [24] 齐进, 吴锤结. 可压缩Navier-Stokes方程的时空耦合优化低维动力系统建模方法[J]. 应用数学和力学, 2022, 43(10): 1053-1085. doi: 10.21656/1000-0887.430220

    QI Jin, WU Chuijie. Construction of spatiotemporal-coupling optimal low-dimensional dynamical systems for compressible Navier-Stokes equations[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1053-1085. (in Chinese) doi: 10.21656/1000-0887.430220
    [25] LI L X, DONG J H, NENOFF T M. Desalination by reverse osmosis using MFI zeolite membranes[J]. Journal of Membrane Science, 2004, 243(1/2): 401-404.
    [26] COHEN-TANUGI D, GROSSMAN J C. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination[J]. Journal of Chemical Physics, 2014, 141(7): 074704. doi: 10.1063/1.4892638
    [27] GUILLEN G, HOEK E M. Modeling the impacts of feed spacer geometry on reverse osmosis and nanofiltration processes[J]. Chemical Engineering Journal, 2009, 149(1/3): 221.
    [28] HEIRANIAN M, FARIMANI A B, ALURU N R. Water desalination with a single-layer MoS2 nanopore[J]. Nature Communications, 2015, 6: 8616. doi: 10.1038/ncomms9616
    [29] HUMMER G, RASAIAH J C, NOWORYTA J P. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature, 2001, 414(6860): 188-190. doi: 10.1038/35102535
    [30] 曹玉玲, 何强胜, 刘闯. 考虑页岩塑性变形的水力裂缝与天然裂缝相交模拟研究[J]. 应用数学和力学, 2023, 44(6): 679-693. doi: 10.21656/1000-0887.430300

    CAO Yuling, HE Qiangsheng, LIU Chuang. Numerical simulation of hydraulic fractures intersecting natural fractures in shale with plastic deformation[J]. Applied Mathematics and Mechanics, 2023, 44(6): 679-693. (in Chinese) doi: 10.21656/1000-0887.430300
    [31] HE Z J, ZHOU J, LU X, et al. Ice-like water structure in carbon nanotube(8, 8) induces cationic hydration enhancement[J]. Journal of Physical Chemistry C, 2013, 117(21): 11412-11420. doi: 10.1021/jp4025206
    [32] SUK M E, ALURU N R. Water transport through ultrathin graphene[J]. Journal of Physical Chemistry Letters, 2010, 1(10): 1590-1594. doi: 10.1021/jz100240r
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  128
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-19
  • 修回日期:  2023-10-29
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回