留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Gauss羽流模型低阶预估旋流燃烧室中守恒标量的空间分布

吴子恒 张弛 张世红 王柏森

吴子恒, 张弛, 张世红, 王柏森. 基于Gauss羽流模型低阶预估旋流燃烧室中守恒标量的空间分布[J]. 应用数学和力学, 2023, 44(9): 1070-1086. doi: 10.21656/1000-0887.440119
引用本文: 吴子恒, 张弛, 张世红, 王柏森. 基于Gauss羽流模型低阶预估旋流燃烧室中守恒标量的空间分布[J]. 应用数学和力学, 2023, 44(9): 1070-1086. doi: 10.21656/1000-0887.440119
WU Ziheng, ZHANG Chi, ZHANG Shihong, WANG Bosen. Low-Order Predictions of Spatial Distributions of Conserved Scalars in Swirl Combustors Based on the Gaussian Plume Function[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1070-1086. doi: 10.21656/1000-0887.440119
Citation: WU Ziheng, ZHANG Chi, ZHANG Shihong, WANG Bosen. Low-Order Predictions of Spatial Distributions of Conserved Scalars in Swirl Combustors Based on the Gaussian Plume Function[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1070-1086. doi: 10.21656/1000-0887.440119

基于Gauss羽流模型低阶预估旋流燃烧室中守恒标量的空间分布

doi: 10.21656/1000-0887.440119
基金项目: 

国家科技重大专项 J2019-III-0014-0057

详细信息
    作者简介:

    吴子恒(1999—),男,硕士生(E-mail: uptonwu@163.com)

    通讯作者:

    王柏森(1989—),男,副研究员,博士,博士生导师(通讯作者. E-mail: wangbosen@buaa.edu.cn)

  • 中图分类号: V231.2

Low-Order Predictions of Spatial Distributions of Conserved Scalars in Swirl Combustors Based on the Gaussian Plume Function

  • 摘要: 混合分数是表征燃料-空气混合的守恒标量,是湍流燃烧建模的关键参考标量. 其空间分布通常通过三维数值模拟获得,然而对于几何形状复杂的燃烧器,三维数值模拟耗时长、成本高,导致燃烧器迭代设计过程效率低. 该研究发展了基于Gauss羽流(Gaussian plume)模型的低阶模型来计算旋流燃烧室中的混合分数场,以加速燃料-空气混合策略的评估和参数化设计过程. 相比传统的构型,新推导的Gauss羽流模型包含了径向对流的影响和针对旋流来流的修正. 进一步发展了镜像反射模型来模拟壁面-羽流的相互作用,并引入相关修正来确保质量守恒. 将新推导的Gauss羽流模型应用于甲烷旋流燃烧室混合分数场的低阶预测. 基于数值收敛的三维数值模拟生成的数据库,首先采用最小二乘法对模型参数进行优化,然后在宽范围条件下验证了模型的预测精度. 该研究不仅为旋流燃烧器内混合分数的快速预测提供了一种新方法,而且为Gauss羽流模型的进一步发展和应用提供了实例.
  • 图  1  点源释放气体在直流空气来流中的发展示意图

    Figure  1.  Schematic diagram of the development of a point source releasing gas in a straight air stream

    图  2  将来流离散为薄板扫略点源的示意图

    Figure  2.  Schematic diagram of discretizing the flow stream into thin sheets sweeping the point source

    图  3  点源释放气体在旋流空气来流中的发展简图

    Figure  3.  Schematic diagram of the development of a point source releasing gas in a swirling air stream

    图  4  多点源释放气体在旋流空气来流中的发展和镜像反射模型示意图

    Figure  4.  Schematic diagram of the development of multi-point sources releasing gas in a swirling air stream and the mirror reflection model

    图  5  甲烷旋流燃烧室几何结构

    Figure  5.  The configuration of the methane swirl combustor

    图  6  中轴线上甲烷质量分数的分布

    Figure  6.  Mass fractions of CH4 on the centerline of the axial direction

    图  7  不同点源数量的低阶模型预估与三维数值模拟结果对比(x=30 mm)

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  7.  Comparison of the low-order model prediction results of different numbers of point sources and the 3D numerical simulation results (x=30 mm)

    图  8  不同点源数量的低阶模型预估结果与三维数值模拟结果对比(x=60 mm)

    Figure  8.  Comparison of the low-order model prediction results of different numbers of point sources and the 3D numerical simulation results (x=60 mm)

    图  9  不同点源数量的低阶模型预估结果与三维数值模拟结果对比(x=60 mm,径向分布,N=12, N=24, N=36)

    Figure  9.  Comparison of low-order model prediction results of different numbers of point sources and the 3D numerical simulation results (x=60 mm, radial distribution, N=12, N=24, N=36)

    图  10  低阶模型与三维数值模拟中截面结果对比

    Figure  10.  Comparison of the results from the low-order model and the 3D numerical simulations at the central plane

    图  11  低阶模型与三维数值模拟中轴线结果对比

    Figure  11.  Comparison of the results from the low-order model and the 3D numerical simulations at the central axis

    图  12  低阶模型与三维数值模拟结果对比(中截面, x=0.05 m)

    Figure  12.  Comparison of the results from the low-order model and the 3D numerical simulations (the central plane, x=0.05 m)

    图  13  低阶模型与三维数值模拟中截面结果对比

    Figure  13.  Comparison of the results from the low-order model and the 3D numerical simulations at the central plane

    图  14  低阶模型与三维数值模拟中轴线结果对比

    Figure  14.  Comparison of the results from the low-order model and the 3D numerical simulations at the central axis

    图  15  低阶模型与三维数值模拟结果对比(中截面, x=0.05 m)

    Figure  15.  Comparison of the results from the low-order model and the 3D numerical simulations (the central plane, x=0.05 m)

    图  16  两种方法耗时随算例个数的对比

    Figure  16.  Comparison of the computational time costs with the number of cases

    图  17  DLR燃烧室混合分数的实验数据、三维数值模拟与低阶模型对比

    Figure  17.  Comparison of mixture fractions from the experimental data, the 3D numerical simulations and the low-order model

    表  1  工况条件

    Table  1.   Working conditions

    working condition class equivalence ratio ϕ fuel flow rate mf/(kg/s)
    class 1 0.8 0.029 1
    0.9 0.032 7
    1.0 0.036 3
    1.1 0.039 9
    class 2 0.7 0.025 41
    0.75 0.027 2
    1.2 0.043 56
    下载: 导出CSV

    A1  参数αβabm的值

    A1.   The values of parameters α, β, a, b, m

    parameter value
    α 2.8
    β 0.159 4
    a 254.442
    b 0.003 781
    m 0.041 66
    下载: 导出CSV

    A2  参数vc, k的值

    A2.   The values of parameters vc, k

    parameter value parameter value
    vc, 1 1.800 936 vc, 13 -1.800 936
    vc, 2 5.280 076 vc, 14 -5.280 076
    vc, 3 8.399 388 vc, 15 -8.399 388
    vc, 4 10.946 296 vc, 16 -10.946 296
    vc, 5 12.747 232 vc, 17 -12.747 232
    vc, 6 13.679 465 vc, 18 -13.679 465
    vc, 7 13.679 465 vc, 19 -13.679 465
    vc, 8 12.747 232 vc, 20 -12.747 232
    vc, 9 10.946 296 vc, 21 -10.946 296
    vc, 10 8.399 388 vc, 22 -8.399 388
    vc, 11 5.280 076 vc, 23 -5.280 076
    vc, 12 1.800 936 vc, 24 -1.800 936
    下载: 导出CSV

    A3  参数wc, k的值

    A3.   The values of parameters wc, k

    parameter value parameter value
    wc, 1 13.679 465 wc, 13 -13.679 465
    wc, 2 12.747 232 wc, 14 -12.747 232
    wc, 3 10.946 296 wc, 15 -10.946 296
    wc, 4 8.399 388 wc, 16 -8.399 388
    wc, 5 5.280 076 wc, 17 -5.280 076
    wc, 6 1.800 936 wc, 18 -1.800 936
    wc, 7 -1.800 936 wc, 19 1.800 936
    wc, 8 -5.280 076 wc, 20 5.280 076
    wc, 9 -8.399 388 wc, 21 8.399 388
    wc, 10 -10.946 296 wc, 22 10.946 296
    wc, 11 -12.747 232 wc, 23 12.747 232
    wc, 12 -13.679 465 wc, 24 13.679 465
    下载: 导出CSV

    A4  参数pk的值

    A4.   The values of parameters pk

    parameter value parameter value
    p1 -0.001 958 p13 0.001 958
    p2 -0.005 740 p14 0.005 740
    p3 -0.009 131 p15 0.009 131
    p4 -0.011 900 p16 0.011 900
    p5 -0.013 858 p17 0.013 858
    p6 -0.014 872 p18 0.014 872
    p7 -0.014 872 p19 0.014 872
    p8 -0.013 858 p20 0.013 858
    p9 -0.011 900 p21 0.011 900
    p10 -0.009 131 p22 0.009 131
    p11 -0.005 740 p23 0.005 740
    p12 -0.001 958 p24 0.001 958
    下载: 导出CSV

    A5  参数qk的值

    A5.   The values of parameters qk

    parameter value parameter value
    q1 -0.014 872 q13 0.014 872
    q2 -0.013 858 q14 0.013 858
    q3 -0.011 900 q15 0.011 900
    q4 -0.009 131 q16 0.009 131
    q5 -0.005 740 q17 0.005 740
    q6 -0.001 958 q18 0.001 958
    q7 0.001 958 q19 -0.001 958
    q8 0.005 740 q20 -0.005 740
    q9 0.009 131 q21 -0.009 131
    q10 0.011 900 q22 -0.011 900
    q11 0.013 858 q23 -0.013 858
    q12 0.014 872 q24 -0.014 872
    下载: 导出CSV
  • [1] 钟世林. 掺混射流对燃烧室出口温度分布影响研究[D]. 硕士学位论文. 成都: 电子科技大学, 2011.

    ZHONG Shilin. Research on the influence of mixing jet on the outlet temperature distribution of combustion chamber[D]. Master Thesis. Chengdu: University of Electronic Science and Technology of China, 2011. (in Chinese)
    [2] 辛升. 湍流扩散燃烧中守恒标量的数值模拟[D]. 硕士学位论文. 武汉: 华中科技大学, 2004.

    XIN Sheng. Numerical simulation of passive scalar in turbulence diffusion combustion[D]. Master Thesis. Wuhan: Huazhong University of Science and Technology, 2004. (in Chinese)
    [3] BILGER R W, POPE S B, BRAY K N C, et al. Paradigms in turbulent combustion research[J]. Proceedings of the Combustion Institute, 2005, 30(1): 21-42. doi: 10.1016/j.proci.2004.08.273
    [4] BUCKMASTER J, CLAVIN P, LINAN A, et al. Combustion theory and modeling[J]. Proceedings of the Combustion Institute, 2005, 30(1): 1-19. doi: 10.1016/j.proci.2004.08.280
    [5] 张会强, 陈兴隆. 湍流燃烧数值模拟研究的综述[J]. 力学进展, 1999, 29(4): 567-575. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ199904012.htm

    ZHANG Huiqiang, CHEN Xinglong. A review on numerical modeling of turbulent combustion[J]. Advances in Mechanics, 1999, 29(4): 567-575. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ199904012.htm
    [6] BENNEWITZ J W, SCHUMAKER S A, LIETZ C F, et al. Scaling of oxygen-methane reacting coaxial jets using X-ray fluorescence to measure mixture fraction[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6365-6374. doi: 10.1016/j.proci.2020.05.022
    [7] SUTTON J A, DRISCOLL J F. Measurements and statistics of mixture fraction and scalar dissipation rates in turbulent non-premixed jet flames[J]. Combustion and Flame, 2013, 160(9): 1767-1778. doi: 10.1016/j.combustflame.2013.03.006
    [8] MASRI A R, KALT P A, BARLOW R S. The compositional structure of swirl-stabilised turbulent nonpremixed flames[J]. Combustion and Flame, 2004, 137(1/2): 1-37.
    [9] 李继保, 金如山. 燃烧室出口径向温度分布试验及分析研究[J]. 北京航空航天大学学报, 1989(1): 51-61. doi: 10.13700/j.bh.1001-5965.1989.01.007

    LI Jibao, JIN Rushan. Experiment and analysis of radial temperature distribution at combustor exit[J]. Journal of Beijing University of Aeronautics and Astronautics, 1989(1): 51-61. (in Chinese) doi: 10.13700/j.bh.1001-5965.1989.01.007
    [10] KIM I, KIM J, CHOE Y, et al. Effect of vane angle on combustion characteristics of premixed H2/air in swirl micro-combustors with straight vane or twisted vane[J]. Applied Thermal Engineering, 2023, 228: 120528. doi: 10.1016/j.applthermaleng.2023.120528
    [11] LV G, LIU X, ZHANG Z, et al. The effects of premixed pilot-stage on combustion instabilities in stratified swirling flames: a large eddy simulation study[J]. Energy, 2023, 274: 127246. doi: 10.1016/j.energy.2023.127246
    [12] STEINHAUSEN M, ZIRWES T, FERRARO F, et al. Flame-vortex interaction during turbulent side-wall quenching and its implications for flamelet manifolds[J]. Proceedings of the Combustion Institute, 2022, 39(2): 2149-2158.
    [13] GREEN A E S, SINGHAL R P, VENKATESWAR R. Analytic extensions of the Gaussian plume model[J]. Journal of the Air Pollution Control Association, 1980, 30(7): 773-776. doi: 10.1080/00022470.1980.10465108
    [14] SÁNCHEZ-SOSA J E, CASTILLO-MIXCÓATL J, BELTRÁN-PÉREZ G, et al. An application of the Gaussian plume model to localization of an indoor gas source with a mobile robot[J]. Sensors, 2018, 18(12): 4375. doi: 10.3390/s18124375
    [15] 李万莉. 基于高斯模型的复杂地形下天然气泄漏扩散特性研究[D]. 硕士学位论文. 青岛: 中国石油大学(华东), 2018.

    LI Wanli. Research on natural gas leakage and diffusion characteristics under complex topography based on Gaussian plume diffusion model[D]. Master Thesis. Qingdao: China University of Petroleum(EastChina), 2018. (in Chinese)
    [16] CUSSLER E L. Diffusion: Mass Transfer in Fluid Systems[M]. Cambridge University Press, 2009.
    [17] 曹瑞华. 傅里叶变换及其应用[J]. 理论数学, 2014, 4(4): 138-143. https://cdmd.cnki.com.cn/Article/CDMD-10446-1021087916.htm

    CAO Ruihua. The Fourier transform and its application[J]. Pure Mathematics, 2014, 4(4): 138-143. (in Chinese) https://cdmd.cnki.com.cn/Article/CDMD-10446-1021087916.htm
    [18] 李舒琦. 基于主动嗅觉方法的火星甲烷羽流源点定位研究[D]. 硕士学位论文. 哈尔滨: 哈尔滨工业大学, 2021.

    LI Shuqi. Research on location of martian methane plume source based on active olfactory method[D]. Master Thesis. Harbin: Harbin Institute of Technology, 2021. (in Chinese)
    [19] 谷超豪. 数学物理方[M]. 北京: 高等教育出版社, 2002.

    GU Chaohao. Mathematical Physics Equation[M]. Beijing: Higher Education Press, 2002. (in Chinese)
    [20] 杨毅明. 数字信号处理[M]. 北京: 机械工业出版社, 2012.

    YANG Yiming. Digital Signal Processing[M]. Beijing: China Machine Press, 2012. (in Chinese)
    [21] DE NEVERS N. Air Pollution Control Engineering[M]. Waveland Press, 2010.
    [22] 赵宁波, 梁恩广, 石云姣, 等. 进气畸变对回流燃烧室性能的影响研究[J]. 热能动力工程, 2022, 37(12): 104-109. https://www.cnki.com.cn/Article/CJFDTOTAL-RNWS202212013.htm

    ZHAO Ningbo, LIANG Enguang, SHI Yunjiao, et al. Effects of inlet flow rate distortion on counterflow combustor performance[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(12): 104-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RNWS202212013.htm
    [23] SEE Y C, IHME M. Large eddy simulation of a partially-premixed gas turbine model combustor[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1225-1234.
    [24] 王沐晨, 李立州, 张珺, 等. 基于卷积神经网络气动力降阶模型的翼型优化方法[J]. 应用数学和力学, 2022, 43(1): 77-83. doi: 10.21656/1000-0887.420137

    WANG Muchen, LI Lizhou, ZHANG Jun, et al. An airfoil optimization method based on the convolutional neural network aerodynamic reduced order model[J]. Applied Mathematics and Mechanics, 2022, 43(1): 77-83. (in Chinese) doi: 10.21656/1000-0887.420137
  • 加载中
图(17) / 表(6)
计量
  • 文章访问数:  627
  • HTML全文浏览量:  211
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-19
  • 修回日期:  2023-09-13
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回