Low-Order Predictions of Spatial Distributions of Conserved Scalars in Swirl Combustors Based on the Gaussian Plume Function
-
摘要: 混合分数是表征燃料-空气混合的守恒标量,是湍流燃烧建模的关键参考标量. 其空间分布通常通过三维数值模拟获得,然而对于几何形状复杂的燃烧器,三维数值模拟耗时长、成本高,导致燃烧器迭代设计过程效率低. 该研究发展了基于Gauss羽流(Gaussian plume)模型的低阶模型来计算旋流燃烧室中的混合分数场,以加速燃料-空气混合策略的评估和参数化设计过程. 相比传统的构型,新推导的Gauss羽流模型包含了径向对流的影响和针对旋流来流的修正. 进一步发展了镜像反射模型来模拟壁面-羽流的相互作用,并引入相关修正来确保质量守恒. 将新推导的Gauss羽流模型应用于甲烷旋流燃烧室混合分数场的低阶预测. 基于数值收敛的三维数值模拟生成的数据库,首先采用最小二乘法对模型参数进行优化,然后在宽范围条件下验证了模型的预测精度. 该研究不仅为旋流燃烧器内混合分数的快速预测提供了一种新方法,而且为Gauss羽流模型的进一步发展和应用提供了实例.Abstract: The mixture fraction is a conserved scalar characterizing the fuel-air mixing. As a key reference scalar for turbulent combustion modelling, its spatial distribution is usually obtained through 3D numerical simulation, which are, however, time-consuming and costly for combustors with complex geometries. To overcome such low efficiency in the iterative designing process, a low-order model was developed based on the Gaussian plume function to compute the mixture fraction field in the swirl combustor to accelerate the evaluation of the fuel-air mixing strategy and the parameterized design process. Compared with the conventional formulation, the derived new Gaussian plume function includes the effects of convection and corrections due to swirl flows. A mirror image reflection model was further developed to simulate the wall-plume interactions, together with the relevant corrections to ensure mass conservation. This newly derived Gaussian plume model was applied to the low-older prediction of the mixture fraction field in a methane swirl combustor. Based on the database generated through 3D numerical simulations, the model parameters were optimized with the least square method first. The prediction accuracy under broad working conditions was demonstrated. This study not only provides a novel approach for quick predictions of mixture fractions in swirl combustors, but also sets an instance for further development and application of the Gaussian plume model.
-
Key words:
- mixture fraction /
- Gaussian plume function /
- low-order prediction /
- swirl combustor
-
表 1 工况条件
Table 1. Working conditions
working condition class equivalence ratio ϕ fuel flow rate mf/(kg/s) class 1 0.8 0.029 1 0.9 0.032 7 1.0 0.036 3 1.1 0.039 9 class 2 0.7 0.025 41 0.75 0.027 2 1.2 0.043 56 A1 参数α,β,a,b,m的值
A1. The values of parameters α, β, a, b, m
parameter value α 2.8 β 0.159 4 a 254.442 b 0.003 781 m 0.041 66 A2 参数vc, k的值
A2. The values of parameters vc, k
parameter value parameter value vc, 1 1.800 936 vc, 13 -1.800 936 vc, 2 5.280 076 vc, 14 -5.280 076 vc, 3 8.399 388 vc, 15 -8.399 388 vc, 4 10.946 296 vc, 16 -10.946 296 vc, 5 12.747 232 vc, 17 -12.747 232 vc, 6 13.679 465 vc, 18 -13.679 465 vc, 7 13.679 465 vc, 19 -13.679 465 vc, 8 12.747 232 vc, 20 -12.747 232 vc, 9 10.946 296 vc, 21 -10.946 296 vc, 10 8.399 388 vc, 22 -8.399 388 vc, 11 5.280 076 vc, 23 -5.280 076 vc, 12 1.800 936 vc, 24 -1.800 936 A3 参数wc, k的值
A3. The values of parameters wc, k
parameter value parameter value wc, 1 13.679 465 wc, 13 -13.679 465 wc, 2 12.747 232 wc, 14 -12.747 232 wc, 3 10.946 296 wc, 15 -10.946 296 wc, 4 8.399 388 wc, 16 -8.399 388 wc, 5 5.280 076 wc, 17 -5.280 076 wc, 6 1.800 936 wc, 18 -1.800 936 wc, 7 -1.800 936 wc, 19 1.800 936 wc, 8 -5.280 076 wc, 20 5.280 076 wc, 9 -8.399 388 wc, 21 8.399 388 wc, 10 -10.946 296 wc, 22 10.946 296 wc, 11 -12.747 232 wc, 23 12.747 232 wc, 12 -13.679 465 wc, 24 13.679 465 A4 参数pk的值
A4. The values of parameters pk
parameter value parameter value p1 -0.001 958 p13 0.001 958 p2 -0.005 740 p14 0.005 740 p3 -0.009 131 p15 0.009 131 p4 -0.011 900 p16 0.011 900 p5 -0.013 858 p17 0.013 858 p6 -0.014 872 p18 0.014 872 p7 -0.014 872 p19 0.014 872 p8 -0.013 858 p20 0.013 858 p9 -0.011 900 p21 0.011 900 p10 -0.009 131 p22 0.009 131 p11 -0.005 740 p23 0.005 740 p12 -0.001 958 p24 0.001 958 A5 参数qk的值
A5. The values of parameters qk
parameter value parameter value q1 -0.014 872 q13 0.014 872 q2 -0.013 858 q14 0.013 858 q3 -0.011 900 q15 0.011 900 q4 -0.009 131 q16 0.009 131 q5 -0.005 740 q17 0.005 740 q6 -0.001 958 q18 0.001 958 q7 0.001 958 q19 -0.001 958 q8 0.005 740 q20 -0.005 740 q9 0.009 131 q21 -0.009 131 q10 0.011 900 q22 -0.011 900 q11 0.013 858 q23 -0.013 858 q12 0.014 872 q24 -0.014 872 -
[1] 钟世林. 掺混射流对燃烧室出口温度分布影响研究[D]. 硕士学位论文. 成都: 电子科技大学, 2011.ZHONG Shilin. Research on the influence of mixing jet on the outlet temperature distribution of combustion chamber[D]. Master Thesis. Chengdu: University of Electronic Science and Technology of China, 2011. (in Chinese) [2] 辛升. 湍流扩散燃烧中守恒标量的数值模拟[D]. 硕士学位论文. 武汉: 华中科技大学, 2004.XIN Sheng. Numerical simulation of passive scalar in turbulence diffusion combustion[D]. Master Thesis. Wuhan: Huazhong University of Science and Technology, 2004. (in Chinese) [3] BILGER R W, POPE S B, BRAY K N C, et al. Paradigms in turbulent combustion research[J]. Proceedings of the Combustion Institute, 2005, 30(1): 21-42. doi: 10.1016/j.proci.2004.08.273 [4] BUCKMASTER J, CLAVIN P, LINAN A, et al. Combustion theory and modeling[J]. Proceedings of the Combustion Institute, 2005, 30(1): 1-19. doi: 10.1016/j.proci.2004.08.280 [5] 张会强, 陈兴隆. 湍流燃烧数值模拟研究的综述[J]. 力学进展, 1999, 29(4): 567-575. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ199904012.htmZHANG Huiqiang, CHEN Xinglong. A review on numerical modeling of turbulent combustion[J]. Advances in Mechanics, 1999, 29(4): 567-575. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ199904012.htm [6] BENNEWITZ J W, SCHUMAKER S A, LIETZ C F, et al. Scaling of oxygen-methane reacting coaxial jets using X-ray fluorescence to measure mixture fraction[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6365-6374. doi: 10.1016/j.proci.2020.05.022 [7] SUTTON J A, DRISCOLL J F. Measurements and statistics of mixture fraction and scalar dissipation rates in turbulent non-premixed jet flames[J]. Combustion and Flame, 2013, 160(9): 1767-1778. doi: 10.1016/j.combustflame.2013.03.006 [8] MASRI A R, KALT P A, BARLOW R S. The compositional structure of swirl-stabilised turbulent nonpremixed flames[J]. Combustion and Flame, 2004, 137(1/2): 1-37. [9] 李继保, 金如山. 燃烧室出口径向温度分布试验及分析研究[J]. 北京航空航天大学学报, 1989(1): 51-61. doi: 10.13700/j.bh.1001-5965.1989.01.007LI Jibao, JIN Rushan. Experiment and analysis of radial temperature distribution at combustor exit[J]. Journal of Beijing University of Aeronautics and Astronautics, 1989(1): 51-61. (in Chinese) doi: 10.13700/j.bh.1001-5965.1989.01.007 [10] KIM I, KIM J, CHOE Y, et al. Effect of vane angle on combustion characteristics of premixed H2/air in swirl micro-combustors with straight vane or twisted vane[J]. Applied Thermal Engineering, 2023, 228: 120528. doi: 10.1016/j.applthermaleng.2023.120528 [11] LV G, LIU X, ZHANG Z, et al. The effects of premixed pilot-stage on combustion instabilities in stratified swirling flames: a large eddy simulation study[J]. Energy, 2023, 274: 127246. doi: 10.1016/j.energy.2023.127246 [12] STEINHAUSEN M, ZIRWES T, FERRARO F, et al. Flame-vortex interaction during turbulent side-wall quenching and its implications for flamelet manifolds[J]. Proceedings of the Combustion Institute, 2022, 39(2): 2149-2158. [13] GREEN A E S, SINGHAL R P, VENKATESWAR R. Analytic extensions of the Gaussian plume model[J]. Journal of the Air Pollution Control Association, 1980, 30(7): 773-776. doi: 10.1080/00022470.1980.10465108 [14] SÁNCHEZ-SOSA J E, CASTILLO-MIXCÓATL J, BELTRÁN-PÉREZ G, et al. An application of the Gaussian plume model to localization of an indoor gas source with a mobile robot[J]. Sensors, 2018, 18(12): 4375. doi: 10.3390/s18124375 [15] 李万莉. 基于高斯模型的复杂地形下天然气泄漏扩散特性研究[D]. 硕士学位论文. 青岛: 中国石油大学(华东), 2018.LI Wanli. Research on natural gas leakage and diffusion characteristics under complex topography based on Gaussian plume diffusion model[D]. Master Thesis. Qingdao: China University of Petroleum(EastChina), 2018. (in Chinese) [16] CUSSLER E L. Diffusion: Mass Transfer in Fluid Systems[M]. Cambridge University Press, 2009. [17] 曹瑞华. 傅里叶变换及其应用[J]. 理论数学, 2014, 4(4): 138-143. https://cdmd.cnki.com.cn/Article/CDMD-10446-1021087916.htmCAO Ruihua. The Fourier transform and its application[J]. Pure Mathematics, 2014, 4(4): 138-143. (in Chinese) https://cdmd.cnki.com.cn/Article/CDMD-10446-1021087916.htm [18] 李舒琦. 基于主动嗅觉方法的火星甲烷羽流源点定位研究[D]. 硕士学位论文. 哈尔滨: 哈尔滨工业大学, 2021.LI Shuqi. Research on location of martian methane plume source based on active olfactory method[D]. Master Thesis. Harbin: Harbin Institute of Technology, 2021. (in Chinese) [19] 谷超豪. 数学物理方[M]. 北京: 高等教育出版社, 2002.GU Chaohao. Mathematical Physics Equation[M]. Beijing: Higher Education Press, 2002. (in Chinese) [20] 杨毅明. 数字信号处理[M]. 北京: 机械工业出版社, 2012.YANG Yiming. Digital Signal Processing[M]. Beijing: China Machine Press, 2012. (in Chinese) [21] DE NEVERS N. Air Pollution Control Engineering[M]. Waveland Press, 2010. [22] 赵宁波, 梁恩广, 石云姣, 等. 进气畸变对回流燃烧室性能的影响研究[J]. 热能动力工程, 2022, 37(12): 104-109. https://www.cnki.com.cn/Article/CJFDTOTAL-RNWS202212013.htmZHAO Ningbo, LIANG Enguang, SHI Yunjiao, et al. Effects of inlet flow rate distortion on counterflow combustor performance[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(12): 104-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RNWS202212013.htm [23] SEE Y C, IHME M. Large eddy simulation of a partially-premixed gas turbine model combustor[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1225-1234. [24] 王沐晨, 李立州, 张珺, 等. 基于卷积神经网络气动力降阶模型的翼型优化方法[J]. 应用数学和力学, 2022, 43(1): 77-83. doi: 10.21656/1000-0887.420137WANG Muchen, LI Lizhou, ZHANG Jun, et al. An airfoil optimization method based on the convolutional neural network aerodynamic reduced order model[J]. Applied Mathematics and Mechanics, 2022, 43(1): 77-83. (in Chinese) doi: 10.21656/1000-0887.420137