留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

次表面分岔裂纹的力学行为

孙奇 吴金波 江晓禹

孙奇, 吴金波, 江晓禹. 次表面分岔裂纹的力学行为[J]. 应用数学和力学, 2023, 44(12): 1453-1462. doi: 10.21656/1000-0887.440121
引用本文: 孙奇, 吴金波, 江晓禹. 次表面分岔裂纹的力学行为[J]. 应用数学和力学, 2023, 44(12): 1453-1462. doi: 10.21656/1000-0887.440121
SUN Qi, WU Jinbo, JIANG Xiaoyu. Mechanical Behaviors of Subsurface Bifurcating Cracks[J]. Applied Mathematics and Mechanics, 2023, 44(12): 1453-1462. doi: 10.21656/1000-0887.440121
Citation: SUN Qi, WU Jinbo, JIANG Xiaoyu. Mechanical Behaviors of Subsurface Bifurcating Cracks[J]. Applied Mathematics and Mechanics, 2023, 44(12): 1453-1462. doi: 10.21656/1000-0887.440121

次表面分岔裂纹的力学行为

doi: 10.21656/1000-0887.440121
基金项目: 

国家自然科学基金项目 11472230

详细信息
    作者简介:

    孙奇(1999—),男,硕士生(E-mail: 3271362726@qq.com)

    通讯作者:

    江晓禹(1965—),男,教授,博士(通讯作者. E-mail: xiaoyujiang8@sina.com)

  • 中图分类号: O346

Mechanical Behaviors of Subsurface Bifurcating Cracks

  • 摘要: 在复杂荷载作用下,利用分布位错技术(DDT)对半无限大平面内的分岔裂纹问题进行研究,并进行了正确性验证. 根据等效应力强度因子判据,初步解释了裂纹产生分岔的原因;研究了不同埋深、荷载比值、分支长度比值、分岔角度情况下的分岔裂纹尖端的应力强度因子;同时,研究了多分支分岔裂纹,计算结果与有限元结果吻合. 结果显示:埋深越深,分岔裂纹扩展越困难,当埋深为d/a=1.5时,分支裂尖应力强度因子削弱程度可达15%左右;较长分支会极大地抑制短分支的扩展,当两分支裂纹长度比达到b/c=2以上时,屏蔽效应可达50%以上;另外,分岔角度和荷载比值会改变分岔裂纹主导的扩展模式.
  • 图  1  复杂荷载下的半无限平面分岔裂纹

    Figure  1.  The semi infinite plane bifurcating crack under complex loads

    图  2  坐标变换示意图

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  Schematic diagram of coordinate transformation

    图  3  非对称分岔裂纹的计算结果对照图

    Figure  3.  Comparison of calculation results of asymmetric bifurcating crack

    图  4  不同角度下的等效应力强度因子及裂纹分岔示意图

    Figure  4.  Schematic diagram of the equivalent stress intensity factor and the crack bifurcation at different angles

    图  5  埋置深度对归一化应力强度因子的影响

    Figure  5.  Effects of burial depths on normalized stress intensity factors

    图  6  荷载比值对归一化应力强度因子的影响

    Figure  6.  Effects of load ratios on normalized stress intensity factors

    图  7  分支长度比值对归一化应力强度因子的影响

    Figure  7.  Effects of branch length ratios on normalized stress intensity factors

    图  8  分岔角度对归一化应力强度因子的影响

    Figure  8.  Effects of bifurcation angles on normalized stress intensity factors

    图  9  多分支分岔裂纹示意图以及有限元网格划分局部图

    Figure  9.  Schematic diagram of the multiple branch bifurcation crack and the local partial finite element mesh

    表  1  多分支分岔裂纹有限元计算与本文结果对照

    Table  1.   Comparison between the results of finite element calculation of the multi branch bifurcation crack and the results in this paper

    KA/(MPa·$\sqrt{\mathrm{mm}}$) KE/(MPa·$\sqrt{\mathrm{mm}}$) KB/(MPa·$\sqrt{\mathrm{mm}}$) KF/(MPa·$\sqrt{\mathrm{mm}}$)
    FEM 2.832 0.618 1.313 1.686
    DDT 2.807 0.613 1.289 1.607
    KA/(MPa·$\sqrt{\mathrm{mm}}$) KE/(MPa·$\sqrt{\mathrm{mm}}$) KB/(MPa·$\sqrt{\mathrm{mm}}$) KF/(MPa·$\sqrt{\mathrm{mm}}$)
    FEM -0.032 4 -1.028 1.132 -0.760
    DDT -0.023 8 -1.020 1.165 -0.714
    下载: 导出CSV
  • [1] THEOCARIS P S, IOAKIMIDIS N. The symmetrically branched crack in an infinite elastic medium[J]. Zeitschrift für Angewandte Mathematik und Physik, 1976, 27(6): 801-814. doi: 10.1007/BF01595131
    [2] LAM K Y, ONG P P, WUDE N. Interaction between a circular inclusion and a symmetrically branched crack[J]. Theoretical and Applied Fracture Mechanics, 1998, 28(3): 197-211. doi: 10.1016/S0167-8442(98)00005-6
    [3] YAN X. Stress intensity factors for asymmetric branched cracks in plane extension by using crack-tip displacement discontinuity elements[J]. Mechanics Research Communications, 2005, 32(4): 375-384. doi: 10.1016/j.mechrescom.2004.10.005
    [4] YAVUZ A K, PHOENIX S L, TERMAATH S C. An accurate and fast analysis for strongly interacting multiple crack configurations including kinked (V) and branched (Y) cracks[J]. International Journal of Solids and Structures, 2006, 43(22/23): 6727-6750.
    [5] DAHLAN H, RUSLI M, AS'AD A, et al. Numerical study on the symmetric and asymmetric orientation of the crack branching in 2D plate[J]. IOP Conference Series: Materials Science and Engineering, 2020, 830(4): 42026. doi: 10.1088/1757-899X/830/4/042026
    [6] 魏华建, 董茜茜, 王酉钰. 拉伸荷载下分支裂隙破坏机理研究[J]. 应用力学学报, 2021, 38(1): 150-157.

    WEI Huajian, DONG Qianqian, WANG Youyu. Research on failure mechanism of branch crack under tensile loading[J]. Chinese Journal of Applied Mechanics, 2021, 38(1): 150-157. (in Chinese)
    [7] KORNEV V M, KURGUZOV V D. Prefracture zones in quasibrittle materials with branched and kinked cracks[J]. Physical Mesomechanics, 2010, 13(1/2): 54-61.
    [8] CHEN J, ZHOU X. The enhanced extended finite element method for the propagation of complex branched cracks[J]. Engineering Analysis With Boundary Elements, 2019, 104: 46-62. doi: 10.1016/j.enganabound.2019.03.028
    [9] 张端, 董茜茜. 裂隙分支对单轴拉伸下裂纹破坏模式的影响[J]. 矿业研究与开发, 2020, 40(11): 64-70.

    ZHANG Duan, DONG Qianqian. Effect of fissure branches on crack failure modes under uniaxial tension[J]. Mining Research and Development, 2020, 40(11): 64-70. (in Chinese)
    [10] LI X, LI X, JIANG X. Influence of a micro-crack on the finite macro-crack[J]. Engineering Fracture Mechanics, 2017, 177: 95-103. doi: 10.1016/j.engfracmech.2017.03.037
    [11] LI X, JIANG X, LI X, et al. Solution of an inclined crack in a finite plane and a new criterion to predict fatigue crack propagation[J]. International Journal of Mechanical Sciences, 2016, 119: 217-223. doi: 10.1016/j.ijmecsci.2016.10.019
    [12] 邢帅兵, 王强胜, 生月, 等. 圆形杂质对裂纹扩展的影响[J]. 应用数学和力学, 2019, 40(2): 189-199. doi: 10.21656/1000-0887.390136

    XING Shuaibing, WANG Qiangsheng, SHENG Yue, et al. Effects of circular inhomogeneity on crack propagation[J]. Applied Mathematics and Mechanics, 2019, 40(2): 189-199. (in Chinese) doi: 10.21656/1000-0887.390136
    [13] YAN X. A numerical analysis of stress intensity factors at bifurcated cracks[J]. Engineering Failure Analysis, 2006, 13(4): 629-637. doi: 10.1016/j.engfailanal.2004.12.043
    [14] 文良华. 钢轨损伤行为的研究[D]. 硕士学位论文. 成都: 西南交通大学, 2015.

    WEN Lianghua. The research of rail damage behavior[D]. Master Thesis. Chengdu: Southwest Jiaotong University, 2015. (in Chinese)
    [15] QUINN G D. On crack branching angles in glasses and ceramics[J]. Journal of the European Ceramic Society, 2020, 40(14): 4711-4721. doi: 10.1016/j.jeurceramsoc.2019.11.024
    [16] CHEN Y Z, LIN X Y. Numerical solution for the T-stress in branch crack problem with infinitesimal branch length[J]. Engineering Fracture Mechanics, 2010, 77(13): 2593-2600. doi: 10.1016/j.engfracmech.2010.06.016
    [17] GHORBANPOOR R, SABERI-NADJAFI J, LONG N M A N, et al. Stability and convergence analysis of singular integral equations for unequal arms branch crack problems in plane elasticity[J]. Applied Mathematical Modelling, 2022, 103: 731-749. doi: 10.1016/j.apm.2021.11.009
    [18] 李煦, 苏睿, 张欢, 等. 微裂纹群对主裂纹尖端损伤行为的影响[J]. 应用数学和力学, 2022, 43(12): 1347-1358. doi: 10.21656/1000-0887.420333

    LI Xu, SU Rui, ZHANG Huan, et al. Influence of multiple micro cracks on the damage behavior of a macro-crack tip[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1347-1358. (in Chinese) doi: 10.21656/1000-0887.420333
    [19] 郭钊, 郭子涛, 易玲艳. 多裂纹问题计算分析的本征COD边界积分方程方法[J]. 应用数学和力学, 2019, 40(2): 200-209. doi: 10.21656/1000-0887.390183

    GUO Zhao, GUO Zitao, YI Lingyan. Analysis of multicrack problems with eigen COD boundary integral equations[J]. Applied Mathematics and Mechanics, 2019, 40(2): 200-209. (in Chinese) doi: 10.21656/1000-0887.390183
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  406
  • HTML全文浏览量:  108
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-21
  • 修回日期:  2023-09-11
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回