留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面效应对热电材料中纳米孔周围热应力的影响

赵婕燕 杨海兵

赵婕燕, 杨海兵. 表面效应对热电材料中纳米孔周围热应力的影响[J]. 应用数学和力学, 2023, 44(11): 1311-1324. doi: 10.21656/1000-0887.440151
引用本文: 赵婕燕, 杨海兵. 表面效应对热电材料中纳米孔周围热应力的影响[J]. 应用数学和力学, 2023, 44(11): 1311-1324. doi: 10.21656/1000-0887.440151
ZHAO Jieyan, YANG Haibing. Surface Effects on Thermal Stresses Around the Nanohole in Thermoelectric Material[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1311-1324. doi: 10.21656/1000-0887.440151
Citation: ZHAO Jieyan, YANG Haibing. Surface Effects on Thermal Stresses Around the Nanohole in Thermoelectric Material[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1311-1324. doi: 10.21656/1000-0887.440151

表面效应对热电材料中纳米孔周围热应力的影响

doi: 10.21656/1000-0887.440151
基金项目: 

国家自然科学基金项目 11902116

广东省自然科学基金项目 2022A1515011773

详细信息
    作者简介:

    赵婕燕(1998—),女,硕士生(E-mail: 18768174161@163.com)

    通讯作者:

    杨海兵(1988—),男,讲师,博士(通讯作者. E-mail: yanghb@scut.edu.cn)

  • 中图分类号: TB332;O39

Surface Effects on Thermal Stresses Around the Nanohole in Thermoelectric Material

  • 摘要: 基于完整Gurtin-Murdoch(G-M)低阶表面能模型,进一步探讨了纳米尺度下表面效应的影响. 建立了合理考虑构型变化的应力边界条件,实现了研究尺度从宏观到微观的转变. 利用复变函数理论和保角映射技术,构建了用于纳米尺度下的热-电-力理论框架模型,得到了热电基体中纳米孔周围热场、温度场以及应力场的半解析解. 数值结果表明,相对于完整G-M模型,简化G-M模型(忽略孔洞构型变化的影响)往往会高估表面效应和远场热电载荷对热应力分布的影响. 此外,表面效应的存在将在一定程度上缓解纳米孔周围的热应力集中.
  • 图  1  包含纳米孔的无限大热电基体

    Figure  1.  The infinite thermoelectric matrix with a nanohole

    图  2  微观尺度下,本文工作与前人工作的比较

    Figure  2.  Comparison of this work with previous work at microscale

    图  3  表面张力对圆孔周围环向热应力的影响

    Figure  3.  Effects of surface tensions on hoop thermal stresses around the circular hole

    图  4  环向热应力随表面张力的线性变化

    Figure  4.  Linear variations of hoop thermal stresses with the surface tension

    图  5  纳米孔周围的环向热应力

    Figure  5.  Hoop thermal stresses around the nanohole

    图  6  孔周残余应力分布

    Figure  6.  The residual hoop stress distributions around the nanohole

    图  7  表面张力的引入对环向热应力和由热电外载引起的环向热应力的影响

    Figure  7.  The influences of the surface tension on the hoop thermal stress and the hoop thermal stress induced by thermoelectric external loading

    图  8  表面效应对由热电外载引起的环向热应力的影响

    Figure  8.  The surface effects on the hoop thermal stress induced by thermoelectric external loading

    表  1  Bi2Te3和PbTe的材料性能

    Table  1.   Properties of the Bi2Te3 material and the PbTe material

    δ/(S/m) E/GPa ε/(V/K) κ/(W/(m·K)) λ/K-1 ν
    Bi2Te3 1.1×105 47 2×10-4 1.6 2.7×10-5 0.4
    PbTe 1×104 58 3×10-4 1.5 2×10-5 0.29
    下载: 导出CSV

    表  2  不同表面弹性与表面张力共同作用下的环向应力值(单位:MPa)

    Table  2.   Hoop stresses under the combined actions of different surface elasticities and surface tensions (unit: MPa)

    surface elasticity γ/(N/m) δtt/MPa
    τs=0.2 N/m τs=0.6 N/m τs=1.0 N/m
    0 138.587 0 136.587 0 134.587 0
    0.2 138.573 3 136.573 3 134.573 4
    0.6 138.545 8 136.546 0 134.546 1
    1.0 138.518 3 136.518 6 134.518 9
    下载: 导出CSV
  • [1] BISWAS K, HE J Q, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489: 414-418. doi: 10.1038/nature11439
    [2] ZHAO L D, LO S H, ZHANG Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J]. Nature, 2014, 508: 373-377. doi: 10.1038/nature13184
    [3] MARTIN-GONZALEZ M, CABALLERO-CALERO O, DIAZ-CHAO P. Nanoengineering thermoelectrics for 21st century: energy harvesting and other trends in the field[J]. Renewable & Sustainable Energy Reviews, 2013, 24: 288-305.
    [4] LIU W S, YAN X, CHEN G, et al. Recent advances in thermoelectric nanocomposites[J]. Nano Energy, 2012, 1(1): 42-56. doi: 10.1016/j.nanoen.2011.10.001
    [5] DRESSELHAUS M S, CHEN G, TANG M Y, et al. New directions for low-dimensional thermoelectric materials[J]. Advanced Materials, 2007, 19(8): 1043-1053. doi: 10.1002/adma.200600527
    [6] WU Y H, ZHAI R S, ZHU T J, et al. Enhancing room temperature thermoelectric performance of n-type polycrystalline bismuth-telluride-based alloys via Ag doping and hot deformation[J]. Materials Today Physics, 2017, 2: 62-68. doi: 10.1016/j.mtphys.2017.09.001
    [7] WANG Y, LIU W D, GAO H, et al. High porosity in nanostructured n-type Bi2Te3 obtaining ultralow lattice thermal conductivity[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 31237-31244.
    [8] XU B A, FENG T L, AGNE M T, et al. Highly porous thermoelectric nanocomposites with low thermal conductivity and high figure of merit from large-scale solution-synthesized Bi2Te2.5Se0.5 hollow nanostructures[J]. Angewandte Chemie-International Edition, 2017, 56(13): 3546-3551. doi: 10.1002/anie.201612041
    [9] TARKHANYAN R H, NIARCHOS D G. Reduction of thermal conductivity in porous "gray" materials[J]. APL Materials, 2014, 2(7): 076107. doi: 10.1063/1.4886220
    [10] DUAN H L, WANG J, KARIHALOO B L, et al. Nanoporous materials can be made stiffer than non-porous counterparts by surface modification[J]. ACTA Materialia, 2006, 54(11): 2983-2990. doi: 10.1016/j.actamat.2006.02.035
    [11] YU C B, YANG H B, SONG K, et al. Stress concentration around an arbitrarily-shaped hole in nonlinear fully coupled thermoelectric materials[J]. Journal of Mechanics of Materials and Structures, 2019, 14(2): 259-276. doi: 10.2140/jomms.2019.14.259
    [12] 崔春丽, 徐耀玲. 预测纳米纤维复合材料有效弹性性能的界面模型和界面相模型[J]. 应用数学和力学, 2022, 43(8): 877-887. doi: 10.21656/1000-0887.420231

    CUI Chunli, XU Yaoling. The interface model and the interphase model for predicting the effective elastic properties of nano-fiber composites[J]. Applied Mathematics and Mechanics, 2022, 43(8): 877-887. (in Chinese) doi: 10.21656/1000-0887.420231
    [13] GURTIN M E, MURDOCH A I. A continuum theory of elastic material surfaces[J]. Archive for Rational Mechanics Analysis, 1975, 57(4): 291-323. doi: 10.1007/BF00261375
    [14] DAI M, GAO C F, RU C Q. Surface tension-induced stress concentration around a nanosized hole of arbitrary shape in an elastic half-plane[J]. Meccanica, 2014, 49(12): 2847-2859. doi: 10.1007/s11012-014-0030-y
    [15] WANG S, YANG H B, GAO C F, et al. In-plane stress analysis of two nanoscale holes under surface tension[J]. Archive of Applied Mechanics, 2020, 90(6): 1363-1372. doi: 10.1007/s00419-020-01672-9
    [16] 冯国益, 肖俊华, 苏梦雨. 考虑表面效应时孔边均布径向多裂纹Ⅲ型断裂力学分析[J]. 应用数学和力学, 2020, 41(4): 376-385. doi: 10.21656/1000-0887.400177

    FENG Guoyi, XIAO Junhua, SU Mengyu. Fracture mechanics analysis of mode-Ⅲ fadial multi cracks on the edge of a hole with surface effects[J]. Applied Mathematics and Mechanics, 2020, 41(4): 376-385. (in Chinese) doi: 10.21656/1000-0887.400177
    [17] WANG S, DAI M, RU C Q, et al. Surface tension-induced interfacial stresses around a nanoscale inclusion of arbitrary shape[J]. Zeitschrift fur Angewandte Mathematik und Physik, 2017, 68(6): 127. doi: 10.1007/s00033-017-0876-7
    [18] WANG S, LI X Y, YI X, et al. Morphological changes of nanofiber cross-sections due to surface tension[J]. Extreme Mechanics Letters, 2021, 44: 101211. doi: 10.1016/j.eml.2021.101211
    [19] 黄汝超, 陈永强. 残余界面应力对粒子填充热弹性纳米复合材料有效热膨胀系数的影响[J]. 应用数学和力学, 2011, 32(11): 1283-1293. doi: 10.3879/j.issn.1000-0887.2011.11.003

    HUANG Ruchao, CHEN Yongqiang. Effects of residual interface stress on effective thermal expansion coefficient of particle-filled composite[J]. Applied Mathematics and Mechanics, 2011, 32(11): 1283-1293. (in Chinese) doi: 10.3879/j.issn.1000-0887.2011.11.003
    [20] SONG K, SONG H P, SCHIAVONE P, et al. The effects of surface elasticity on the thermal stress around a circular nano-hole in a thermoelectric material[J]. Mathematics and Mechanics of Solids, 2019, 24(10): 3156-3166. doi: 10.1177/1081286519837315
    [21] DAI M, GHARAHI A, SCHIAVONE P. Note on the deformation-induced change in the curvature of a material surface in plane deformations[J]. Mechanics Research Communications, 2018, 94: 88-90. doi: 10.1016/j.mechrescom.2018.10.001
    [22] DAI M, SCHIAVONE P. Deformation-induced change in the geometry of a general material surface and its relation to the Gurtin-Murdoch model[J]. Journal of Applied Mechanics-Transactions of the ASME, 2020, 87(6): 061005. doi: 10.1115/1.4046635
    [23] ZHANG A B, WANG B L. Explicit solutions of an elliptic hole or a crack problem in thermoelectric materials[J]. Engineering Fracture Mechanics, 2016, 151: 11-21. doi: 10.1016/j.engfracmech.2015.11.013
    [24] WANG P, WANG B L, WANG K F, et al. Analysis of inclusion in thermoelectric materials: the thermal stress field and the effect of inclusion on thermoelectric properties[J]. Composites (Part B): Engineering, 2019, 166: 130-138. doi: 10.1016/j.compositesb.2018.11.120
    [25] MOGILEVSKAYA S G, CROUCH S L, STOLARSKI H K. Multiple interacting circular nano-inhomogeneities with surface/interface effects[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(6): 2298-2327. doi: 10.1016/j.jmps.2008.01.001
    [26] DAI M, WANG Y J, SCHIAVONE P. Integral-type stress boundary condition in the complete Gurtin-Murdoch surface model with accompanying complex variable representation[J]. Journal of Elasticity, 2019, 134(2): 235-241. doi: 10.1007/s10659-018-9695-0
    [27] PEI P Y, YANG H B, DAI M. Consistency of the boundary value problem of an elastic body involving surface tension in small deformations[J]. Mathematics and Mechanics of Solids, 2023, 28(6): 1488-1499. doi: 10.1177/10812865221122151
    [28] MENG Q L, KONG S, HUANG Z W, et al. Simultaneous enhancement in the power factor and thermoelectric performance of copper sulfide by In2S3 doping[J]. Journal of Materials Chemistry A, 2016, 4(32): 12624-12629. doi: 10.1039/C6TA03780A
    [29] DENNLER G, CHMIELOWSKI R, JACOB S, et al. Are binary copper sulfides/selenides really new and promising thermoelectric materials?[J]. Advanced Energy Materials, 2014, 4(9): 1301581. doi: 10.1002/aenm.201301581
    [30] DAI M, LI M, SCHIAVONE P. Plane deformations of an inhomogeneity-matrix system incorporating a compressible liquid inhomogeneity and complete Gurtin-Murdoch interface model[J]. Journal of Applied Mechanics-Transactions of the ASME, 2018, 85(12): 121010. doi: 10.1115/1.4041469
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  476
  • HTML全文浏览量:  189
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-15
  • 修回日期:  2023-06-15
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回