留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀磁场下Maxwell磁纳米流体的拉伸流动与磁扩散分析

吴学珂 刘春燕 白羽 张艳

吴学珂, 刘春燕, 白羽, 张艳. 非均匀磁场下Maxwell磁纳米流体的拉伸流动与磁扩散分析[J]. 应用数学和力学, 2024, 45(1): 110-119. doi: 10.21656/1000-0887.440164
引用本文: 吴学珂, 刘春燕, 白羽, 张艳. 非均匀磁场下Maxwell磁纳米流体的拉伸流动与磁扩散分析[J]. 应用数学和力学, 2024, 45(1): 110-119. doi: 10.21656/1000-0887.440164
WU Xueke, LIU Chunyan, BAI Yu, ZHANG Yan. Stretching Flow and Magnetic Diffusion Analysis of Maxwell Magnetic Nanofluids in Non-Uniform Magnetic Fields[J]. Applied Mathematics and Mechanics, 2024, 45(1): 110-119. doi: 10.21656/1000-0887.440164
Citation: WU Xueke, LIU Chunyan, BAI Yu, ZHANG Yan. Stretching Flow and Magnetic Diffusion Analysis of Maxwell Magnetic Nanofluids in Non-Uniform Magnetic Fields[J]. Applied Mathematics and Mechanics, 2024, 45(1): 110-119. doi: 10.21656/1000-0887.440164

非均匀磁场下Maxwell磁纳米流体的拉伸流动与磁扩散分析

doi: 10.21656/1000-0887.440164
基金项目: 

国家自然科学基金青年科学基金 12102032

北京市教育委员会科技计划一般项目 KM202310016001

详细信息
    作者简介:

    吴学珂(1998—),女,硕士生(E-mail: 2107010421015@stu.bucea.edu.cn)

    白羽(1979—),女,教授,博士,硕士生导师(E-mail: baiyu@bucea.edu.cn)

    张艳(1972—),女,教授,博士,硕士生导师(E-mail: zhangyan1@bucea.edu.cn)

    通讯作者:

    刘春燕(1992—),女,博士,硕士生导师(通讯作者. E-mail: liuchunyan@bucea.edu.cn)

  • 中图分类号: O357

Stretching Flow and Magnetic Diffusion Analysis of Maxwell Magnetic Nanofluids in Non-Uniform Magnetic Fields

  • 摘要: 磁性纳米颗粒可以提升聚合物的导电性和导热性等性能,被广泛应用于机械、生物医学、能源存储等领域.当外界施加非均匀磁场时,感应磁场在高Reynolds数的情况下不可忽略.为探究磁性纳米颗粒对层流边界层内黏弹性流体非稳态拉伸流动与磁扩散的影响,将时间分布阶Maxwell本构方程与动量方程耦合,建立了二维不可压缩Maxwell磁纳米流体的速度与磁扩散偏微分方程组.采用有限差分法进行数值分析,通过控制磁性纳米颗粒种类、体积分数和磁参数大小,分析了流体的速度和感应磁场在边界层内的分布.研究发现:在熔融聚合物中添加Fe2O3纳米颗粒后,流体的速度、感应磁场最大,速度和磁边界层的厚度最厚;Maxwell纳米流体的松弛时间参数增大,速度与磁扩散均减小;另外,随着磁参数增大,流体的速度边界层厚度减小,磁边界层厚度增大;Fe3O4纳米颗粒的体积分数越大,流体流动越快,感应磁场越小.因此,非均匀磁场下在聚合物中添加磁性纳米颗粒的研究,为改善材料的性能给予了可参考的数据.
  • 图  1  物理模型示意图

    Figure  1.  Schematic diagram of the physical model

    图  2  数值解和解析解的比较

    Figure  2.  Comparison between numerical and analytical solutions

    图  3  不同磁性纳米颗粒对速度的影响

    Figure  3.  Effects of different magnetic nanoparticles on the velocity

    图  4  不同磁性纳米颗粒对感应磁场的影响

    Figure  4.  Effects of different magnetic nanoparticles on the induced magnetic field

    图  5  不同M对速度的影响

    Figure  5.  Effects of different M values on the velocity

    图  6  不同M对感应磁场的影响

    Figure  6.  Effects of different M values on the induced magnetic field

    图  7  不同ϕ对速度的影响

    Figure  7.  Effects of different ϕ values on the velocity

    图  8  不同ϕ对感应磁场的影响

    Figure  8.  Effects of different ϕ values on the induced magnetic field

    图  9  不同λ1对速度的影响

    Figure  9.  Effects of different λ1 values on the velocity

    图  10  不同λ1对感应磁场的影响

    Figure  10.  Effects of different λ1 values on the induced magnetic field

    表  1  磁性纳米颗粒的物理性质

    Table  1.   Physical properties of magnetic nanoparticles

    ρ/(kg/m3) σ/(Ω·m)-1
    Fe3O4 5 200 25 000
    Fe2O3 5 180 10-5.99
    Fe 7 870 9.93×106
    Co 8 900 6.24×106
    下载: 导出CSV
  • [1] 庄昕, 刘付军, 孙艳萍, 等. 非等温黏弹性聚合物流体圆柱绕流的高精度数值模拟[J]. 应用数学和力学, 2022, 43(12): 1380-1391. doi: 10.21656/1000-0887.430127

    ZHUANG Xin, LIU Fujun, SUN Yanping, et al. High accuracy numerical simulation of non-isothermal viscoelastic polymer fluid past a cylinder[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1380-1391. (in Chinese)) doi: 10.21656/1000-0887.430127
    [2] HUMINIC G, HUMINIC A. Application of nanofluids in heat exchangers: a review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8): 5625-5638. doi: 10.1016/j.rser.2012.05.023
    [3] RAMEZANIZADEH M, NAZARI M A, AHMADI M H, et al. Application of nanofluids in thermosyphons: a review[J]. Journal of Molecular Liquids, 2018, 272: 395-402. doi: 10.1016/j.molliq.2018.09.101
    [4] ZAINAL N A, NAZAR R, NAGANTHRAN K, et al. Unsteady EMHD stagnation point flow over a stretching/shrinking sheet in a hybrid Al2O3-Cu/H2O nanofluid[J]. International Communications in Heat and Mass Transfer, 2021, 123: 105205. doi: 10.1016/j.icheatmasstransfer.2021.105205
    [5] SHEIKHOLESLAMI M, RASHIDI M M, GANJI D D. Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4-water nanofluid[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 294: 299-312. doi: 10.1016/j.cma.2015.06.010
    [6] 赵芳彪. 非均匀磁场下磁液液滴生成与输运的实验研究[D]. 昆明: 昆明理工大学, 2019.

    ZHAO Fangbiao. Experimental study on droplet formation and transport of magnetic liquid under inhomogeneous magnetic field[D]. Kunming: Kunming University of Science and Technology, 2019. (in Chinese)
    [7] SHEIKHOLESLAMI M, SEYEDNEZHAD M. Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM[J]. International Journal of Heat and Mass Transfer, 2017, 114: 1169-1180. doi: 10.1016/j.ijheatmasstransfer.2017.07.018
    [8] SHAKER H, ABBASALIZADEH M, KHALILARYA S, et al. Two-phase modeling of the effect of non-uniform magnetic field on mixed convection of magnetic nanofluid inside an open cavity[J]. International Journal of Mechanical Sciences, 2021, 207: 106666. doi: 10.1016/j.ijmecsci.2021.106666
    [9] 翟梦情, 李琦, 郑素佩. 求解一维理想磁流体方程的移动网格熵稳定格式[J]. 计算力学学报, 2023, 40(2): 229-236.

    ZHAI Mengqing, LI Qi, ZHENG Supei. A moving-grid entropy stable scheme for the 1D ideal MHD equations[J]. Chinese Journal of Computational Mechanics, 2023, 40(2): 229-236. (in Chinese))
    [10] BÉG O A, BAKIER A Y, PRASAD V R, et al. Nonsimilar, laminar, steady, electrically-conducting forced convection liquid metal boundary layer flow with induced magnetic field effects[J]. International Journal of Thermal Sciences, 2009, 48(8): 1596-1606. doi: 10.1016/j.ijthermalsci.2008.12.007
    [11] HAYAT T, AJAZ U, KHAN S A, et al. Entropy optimized radiative flow of viscous nanomaterial subject to induced magnetic field[J]. International Communications in Heat and Mass Transfer, 2022, 136: 106159. doi: 10.1016/j.icheatmasstransfer.2022.106159
    [12] DU M, WANG Z, HU H. Measuring memory with the order of fractional derivative[J]. Scientific Reports, 2013, 3(1): 1-3.
    [13] 杨旭, 梁英杰, 孙洪广, 等. 空间分数阶非Newton流体本构及圆管流动规律研究[J]. 应用数学和力学, 2018, 39(11): 1213-1226. doi: 10.21656/1000-0887.390153

    YANG Xu, LIANG Yingjie, SUN Hongguang, et al. A study on the constitutive relation and the flow of spatial fractional non-Newtonian fluid in circular pipes[J]. Applied Mathematics and Mechanics, 2018, 39(11): 1213-1226. (in Chinese)) doi: 10.21656/1000-0887.390153
    [14] ZHAO J, ZHENG L, CHEN X, et al. Unsteady Marangoni convection heat transfer of fractional Maxwell fluid with Cattaneo heat flux[J]. Applied Mathematical Modelling, 2017, 44: 497-507. doi: 10.1016/j.apm.2017.02.021
    [15] CHECHKIN A V, GORENFLO R, SOKOLOV I M. Retarding subdiffusion and accelerating super diffusion governed by distributed-order fractional diffusion equations[J]. Physical Review E, 2002, 66(4): 046129. doi: 10.1103/PhysRevE.66.046129
    [16] YANG S, LIU L, LONG Z, et al. Unsteady natural convection boundary layer flow and heat transfer past a vertical flat plate with novel constitution models[J]. Applied Mathematics Letters, 2021, 120: 107335. doi: 10.1016/j.aml.2021.107335
    [17] YANG W, CHEN X, ZHANG X, et al. Flow and heat transfer of viscoelastic fluid with a novel space distributed-order constitution relationship[J]. Computers & Mathematics With Applications, 2021, 94: 94-103.
    [18] LONG Z, LIU L, YANG S, et al. Analysis of Marangoni boundary layer flow and heat transfer with novel constitution relationships[J]. International Communications in Heat and Mass Transfer, 2021, 127: 105523. doi: 10.1016/j.icheatmasstransfer.2021.105523
    [19] LIU L, FENG L, XU Q, et al. Flow and heat transfer of generalized Maxwell fluid over a moving plate with distributed order time fractional constitutive models[J]. International Communications in Heat and Mass Transfer, 2020, 116: 104679. doi: 10.1016/j.icheatmasstransfer.2020.104679
    [20] MING C Y, LIU F W, ZHENG L C, et al. Analytical solutions of multi-term time fractional differential equations and application to unsteady flows of generalized viscoelastic fluid[J]. Computers & Mathematics With Applications, 2016, 72: 2084-2097.
    [21] ALHARBI K A M, SHAHMIR N, RAMZAN M, et al. Combined impacts of low oscillating magnetic field and Shliomis theory on mono and hybrid nanofluid flows with nonlinear thermal radiation[J]. Nanotechnology, 2023, 34(32): 325402. doi: 10.1088/1361-6528/acd38b
    [22] LANJWANI H B, CHANDIO M S, MALIK K, et al. Stability analysis of boundary layer flow and heat transfer of Fe2O3 and Fe-water base nanofluid over a stretching/shrinking sheet with radiation effect[J]. Engineering, Technology & Applied Science Research, 2022, 12(1): 8114-8122.
    [23] LIU F W, ZHUANG P, ANH V, et al. Stability and convergence next term of the difference methods for the space-time fractional advection-diffusion equation[J]. Applied Mathematical and Computation, 2007, 191: 12-20. doi: 10.1016/j.amc.2006.08.162
    [24] 郭柏灵, 蒲学科, 黄凤辉. 分数阶偏微分方程及其数值解[M]. 北京: 科学出版社, 2011.

    GUO Bailing, PU Xueke, HUANG Fenghui. Fractional Partial Differential Equations and Their Numerical Solutions[M]. Beijing: Science Press, 2011. (in Chinese)
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  164
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-29
  • 修回日期:  2023-09-27
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回