Mechanism Analysis of Wellbore Fracture and Internal Strain State
-
摘要: 为研究立井井壁破裂与内部应变之间的相互规律,搭建井壁实物模型以模拟井壁受力破裂过程和状态,利用分布式光纤技术对井壁内部应变进行监测,并分别从应力和应变多角度进行深入分析. 结果表明:对于应变状态,当施加应力增大,井壁应变程度也随之增大,应变极大值所对应的井壁位置,其应变程度在范围内达到最大,破裂风险也就最高;对于应力作用,不同应力下井壁应变最大值与最小值之间的偏差度越大,井壁稳定性越差,越容易发生破裂;分析了应力、应变二者相互关联性,拟合各方向角所对应的井壁位置应变变化的线性方程,变化率数值越大,井壁应变增长速度就越快,当应变值超过所能承受极限时,井壁会更容易发生破裂;通过对井壁应变数据监测,分析了应变差值、偏差度和应变变化率,结合Lamé公式,建立了井壁应变破裂关系模型,为井壁破裂预警提供了新方案.Abstract: To study the mutual law between the vertical shaft wall fracture and the internal strain, a physical model for the shaft wall was built to simulate the process and state of the shaft wall stress fracture. The distributed optical fiber technology was used to monitor the internal strain of the shaft wall, and the in-depth analysis was conducted from multiple perspectives of stress and strain. The results show that, for the strain state, the wellbore strain degree will increase with the applied stress. In the wellbore position corresponding to the maximum strain value, the strain degree will reach the maximum value within the range, and the risk of fracture will be the highest. For the stress effect, the larger the deviation between the maximum and minimum strain values of the wellbore under different stresses is, the poorer the wellbore stability will be, and the more likely it will rupture. The analysis of the correlation between stress and strain, and the fitting of the linear equation of strain change at the wellbore position corresponding to each direction angle indicate that, the larger the change rate value is, the bigger the growth rate of wellbore strain will be. For the strain value exceeding the allowable limit, the wellbore is more prone to fracture. Through monitoring of the wellbore strain data and analysis of the strain difference, deviation and strain change rate, and combined with the Lame formula, a wellbore strain rupture relationship model was established. The study provides a new scheme for wellbore rupture warning.
-
Key words:
- vertical shaft wall /
- stress-strain /
- wellbore stress /
- linear fitting
-
表 1 不同应力下井壁应变偏差度
Table 1. Deviations of borehole wall strains under different stresses
P/MPa 1 2 3 4 5 6 7 δx(max) 2.553 6×10-4 2.253 1×10-4 1.061 6×10-4 7.42×10-6 -1.089×10-5 -3.253×10-5 -4.239×10-5 δx(min) -4.583×10-5 -4.544×10-5 -8.865×10-5 -1.305 1×10-4 -2.446 5×10-4 -3.452 4×10-4 -4.264 5×10-4 $\exists_x$ 3.011 9×10-4 2.707 5×10-4 1.948 1×10-4 1.379 3×10-4 2.337 6×10-4 3.127 1×10-4 3.840 5×10-4 P/MPa 8 9 10 11 12 13 δx(max) -4.507×10-5 -3.610×10-5 -4.158×10-5 -5.517×10-5 -7.366×10-5 -8.918×10-5 δx(min) -5.098 6×10-4 -6.172 1×10-4 -7.186 2×10-4 -8.252 4×10-4 -9.562 5×10-4 -1.078 45×10-3 $\exists_x$ 4.647 9×10-4 5.811 1×10-4 6.770 4×10-4 7.700 7×10-4 8.825 9×10-4 9.892 8×10-4 -
[1] 孙利辉, 杨本生, 杨万斌, 等. 深部巷道连续双壳加固机理及试验研究[J]. 采矿与安全工程学报, 2013, 30(5): 686-691.SUN Lihui, YANG Bensheng, YANG Wanbin, et al. Reinforcement mechanism and experimental study on continuous double shell of deep roadway[J]. Journal of Mining & Safety Engineering, 2013, 30(5): 686-691. (in Chinese) [2] 王太元, 王侃. 光纤光栅技术在井壁融化期间变形监测中的应用[J]. 煤矿安全, 2016, 47(11): 162-164.WANG Taiyuan, WANG Kan. Application of fiber bragg grating technology in deformation monitoring of shaft wall melting stage[J]. Safety in Coal Mines, 2016, 47(11): 162-164. (in Chinese) [3] 刘金龙, 陈陆望, 王吉利. 立井井壁温度应力特征分析[J]. 岩土力学, 2011, 32(8): 2386-2390. doi: 10.3969/j.issn.1000-7598.2011.08.023LIU Jinlong, CHEN Luwang, WANG Jili. Characteristic analysis of temperature stresses of shaft wall[J]. Rock and Soil Mechanics, 2011, 32(8): 2386-2390. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.08.023 [4] 刘启国, 徐有杰, 刘义成, 等. 夹角断层多段压裂水平井试井求解新方法[J]. 应用数学和力学, 2018, 39(5): 558-567. doi: 10.21656/1000-0887.380297LIU Qiguo, XU Youjie, LIU Yicheng, et al. A new well test analysis method for multi-stage fractured horizontal wells with angle faults[J]. Applied Mathematics and Mechanics, 2018, 39(5): 558-567. (in Chinese) doi: 10.21656/1000-0887.380297 [5] 王华宁, 郭振宇, 高翔, 等. 含水合物地层井壁力学状态的弹塑性解析分析[J]. 同济大学学报(自然科学版), 2020, 48(12): 1696-1706.WANG Huaning, GUO Zhenyu, GAO Xiang, et al. Elastoplastic analytical investigation of mechanical response of wellbore in methane hydrate-bearing sediments[J]. Journal of Tongji University (Natural Science), 2020, 48(12): 1696-1706. (in Chinese) [6] AMADEI B. Rock Anisotropy and the Theory of Stress Measurements[M]. BREBBIA C, ORSZAG S. Lecture Notes in Engineering, Vol 2. Berlin: Springer-Verlag, 1983: 87-116. [7] 古泼塔D, 塞门M. 包括各向异性效应在内的地球介质中井孔的稳定性[J]. 应用数学和力学, 1999, 20(8): 783-802. doi: 10.3321/j.issn:1000-0887.1999.08.003GUPTA D, ZAMAN M. Stability of boreholes in a geologic medium including the effects of anisotropy[J]. Applied Mathematics and Mechanics, 1999, 20(8): 783-802. (in Chinese) doi: 10.3321/j.issn:1000-0887.1999.08.003 [8] 刘志强, 王飞, 郭强. 深厚表土层井壁破裂机理及防治技术研究进展[J]. 煤炭科学技术, 2011, 39(4): 6-10.LIU Zhiqiang, WANG Fei, GUO Qiang. Research progress on mine shaft liner breaking mechanism and prevention technologies in deep and thick overburden[J]. Coal Science and Technology, 2011, 39(4): 6-10. (in Chinese) [9] 张卫东, 常龙, 高佳佳. 横观各向同性地层井壁应力分析[J]. 工程力学, 2015, 32(11): 243-250. doi: 10.6052/j.issn.1000-4750.2014.04.0348ZHANG Weidong, CHANG Long, GAO Jiajia. Stress analysis at the borehole wall in transverse isotropic formations[J]. Engineering Mechanics, 2015, 32(11): 243-250. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.04.0348 [10] 宋朝阳, 纪洪广, 孙利辉. 高地应力深立井井筒围岩应力演化与变形规律及支护分析[J]. 煤炭工程, 2016, 48(10): 45-48. doi: 10.11799/ce201610015SONG Chaoyang, JI Hongguang, SUN Lihui. Evolution-deformation law and support of surrounding rock in deep vertical shaft under high ground stress[J]. Coal Engineering, 2016, 48(10): 45-48. (in Chinese) doi: 10.11799/ce201610015 [11] 张明明, 梁利喜, 刘向君. 页岩储层各向异性对水平井坍塌压力的影响[J]. 应用数学和力学, 2017, 38(3): 295-309. doi: 10.21656/1000-0887.370155ZHANG Mingming, LIANG Lixi, LIU Xiangjun. Impacts of rock anisotropy on horizontal wellbore stability in shale reservoir[J]. Applied mathematics and Mechanics, 2017, 38(3): 295-309. (in Chinese) doi: 10.21656/1000-0887.370155 [12] 管华栋, 周晓敏, 徐衍, 等. 冻结立井井壁早期温度应力计算研究[J]. 金属矿山, 2018, 503(5): 44-47.GUAN Huadong, ZHOU Xiaomin, XU Yan, et al. Calculation of the early thermal stress in freezing vertical shaft lining[J]. Metal Mine, 2018, 503(5): 44-47. (in Chinese) [13] MA T S, LIU Y, CHEN P, et al. Fractureinitiation pressure analysis of horizontal well in anisotropic formations[J]. International Journal of Oil, Gas and Coal Technology, 2019, 22(4): 447-469. doi: 10.1504/IJOGCT.2019.103508 [14] 杨仁树, 王千星. 非均匀荷载下斜井井壁应力和位移场弹性分析[J]. 煤炭学报, 2020, 45(11): 3726-3734.YANG Renshu, WANG Qianxing. Elastic analysis of full stress and displacement field for inclined shaftliner subjected to non-uniform stresses[J]. Journal of China Coal Society, 2020, 45(11): 3726-3734. (in Chinese) [15] 吕有厂, 何志强, 王英伟, 等. 超千米深部矿井采动应力显现规律[J]. 煤炭学报, 2019, 44(5): 1326-1336.LV Youchang, HE Zhiqiang, WANG Yingwei, et al. Mining-induced mechanics behavior in the deep mine with an over-kilometer depth[J]. Journal of China Coal Society, 2019, 44(5): 1326-1336. (in Chinese) [16] 乔立瑾. 立井井筒破坏原因及修复方案设计[J]. 煤炭工程, 2022, 54(8): 6-11.QIAO Lijin. Cause for vertical shaft wall failure and the repair scheme design[J]. Coal Engineering, 2022, 54(8): 6-11. (in Chinese) [17] 乔宏霞, 乔国斌, 路承功. 硫酸盐环境下基于COMSOL混凝土损伤劣化模型[J]. 华中科技大学学报(自然科学版), 2021, 49(3): 119-125.QIAO Hongxia, QIAO Guobin, LU Chenggong. Damage and deterioration model of concrete based on COMSOL in sulfate environment[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(3): 119-125. (in Chinese) [18] 侯晓萍, 樊恒辉. 基于COMSOL Multiphysics的非饱和裂隙土降雨入渗特性研究[J]. 岩土力学, 2022, 43(2): 563-572.HOU Xiaoping, FAN Henghui. Study on rainfall infiltration characteristics of unsaturated fractured soil based on COMSOL Multiphysics[J]. Rock and Soil Mechanics, 2022, 43(2): 563-572. (in Chinese) [19] 朱磊, 柴敬, 陈娜. 基于光纤光栅技术的井筒变形监测[J]. 煤矿安全, 2017, 48(3): 140-143.ZHU Lei, CHAI Jing, CHEN Na. Shaft deformation monitoring based on fiber bragg grating[J]. Safety in Coal Mines, 2017, 48(3): 140-143. (in Chinese) [20] 王正帅, 柴敬, 黄旭超, 等. 采场覆岩变形分布式光纤测量研究[J]. 煤炭科学技术, 2017, 45(10): 196-202.WANG Zhengshuai, CHAI Jing, HUANG Xuchao, et al. Research on overlying strata deformation based on distributed optical fiber sensing measure[J]. Coal Science and Technology, 2017, 45(10): 196-202. (in Chinese) [21] 王德发, 李琪, 叶菁, 等. 气体测量中的线性拟合[J]. 计量科学与技术, 2022, 66(10): 3-9.WANG Defa, LI Qi, YE Jing, et al. Linear fitting in gas measurement[J]. Metrology Science and Technology, 2022, 66(10): 3-9. (in Chinese) [22] 汪伟, 罗周全, 秦亚光, 等. 深部开采初始地应力场非线性反演新方法[J]. 中南大学学报(自然科学版), 2017, 48(3): 804-812.WANG Wei, LUO Zhouquan, QIN Yaguang, et al. A new nonlinear inversion method of geostress field in deep mining[J]. Journal of Central South University (Science and Technology), 2017, 48(3): 804-812. (in Chinese)