留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温高压模拟井筒应力分析与评价

侯永强 纪斌 贾光政 高涵

侯永强, 纪斌, 贾光政, 高涵. 高温高压模拟井筒应力分析与评价[J]. 应用数学和力学, 2023, 44(12): 1522-1534. doi: 10.21656/1000-0887.440172
引用本文: 侯永强, 纪斌, 贾光政, 高涵. 高温高压模拟井筒应力分析与评价[J]. 应用数学和力学, 2023, 44(12): 1522-1534. doi: 10.21656/1000-0887.440172
HOU Yongqiang, JI Bin, JIA Guangzheng, GAO Han. Stress Analysis and Evaluation of the High-Temperature High-Pressure Wellbore Hole Simulator[J]. Applied Mathematics and Mechanics, 2023, 44(12): 1522-1534. doi: 10.21656/1000-0887.440172
Citation: HOU Yongqiang, JI Bin, JIA Guangzheng, GAO Han. Stress Analysis and Evaluation of the High-Temperature High-Pressure Wellbore Hole Simulator[J]. Applied Mathematics and Mechanics, 2023, 44(12): 1522-1534. doi: 10.21656/1000-0887.440172

高温高压模拟井筒应力分析与评价

doi: 10.21656/1000-0887.440172
基金项目: 

2022年度黑龙江省博士后项目 LBH-Z22254

黑龙江省自然科学基金项目 LH2023A002

中国石油天然气股份有限公司重大科技专项 2017E-16-05

详细信息
    通讯作者:

    侯永强(1983—),男,讲师,博士,硕士生导师(通讯作者. E-mail: train_1@163.com)

  • 中图分类号: TH123+.4; O29

Stress Analysis and Evaluation of the High-Temperature High-Pressure Wellbore Hole Simulator

  • 摘要: 模拟井筒是用于模拟油田井下高温高压环境的实验装置,为高温高压厚壁容器. 基于热力学及大涡模拟(LES)理论,建立了模拟井筒温度场物理方程. 基于热弹性力学理论,建立了热应力物理方程. 采用投影法求解温度场控制方程,采用梯形法数值积分求解热应力控制方程,给出了控制方程的离散格式. 通过虚拟密度法对流固耦合传热进行求解,根据应力叠加原理对模拟井筒热应力和压应力及其耦合作用进行了数值求解分析. 研究结果表明:设计壁厚最小值为0.18 m的模拟井筒,强度能够满足在400 ℃加热环境、内部加压220 MPa工作参数下进行高温高压实验. 通过实验验证了所建立的数学模型与数值求解方法的正确性,为高温高压厚壁容器设计提供了理论依据.
  • 图  1  加温装置结构

    Figure  1.  The heating device structure

    图  2  非定常高温高压模拟井筒热学与力学物理模型

    Figure  2.  The unsteady thermal and mechanical physical model diagram for the high-temperature high-pressure wellbore hole simulator

    图  3  不同时刻径向耦合温度分布

    Figure  3.  Radial coupling temperature histories at different moments

    图  4  径向非定常热应力的时间分布

    Figure  4.  Time histories of the radial unsteady thermal stress

    图  5  周向非定常热应力的时间分布

    Figure  5.  Time histories of the tangential unsteady thermal stress

    图  6  轴向非定常热应力的时间分布

    Figure  6.  Time histories of the axial unsteady thermal stress

    图  7  径向非定常热应力沿半径的分布

    Figure  7.  Distribution of the radial unsteady thermal stress along the radius

    图  8  周向非定常热应力沿半径的分布

    Figure  8.  Distribution of the tangential unsteady thermal stress along the radius

    图  9  轴向非定常热应力沿半径的分布

    Figure  9.  Distribution of the axial unsteady thermal stress along the radius

    图  10  径向与周向压应力分布

    Figure  10.  Radial and tangential compressive stress distributions

    图  11  非定常等效热应力沿径向的时间分布

    Figure  11.  Time histories of the unsteady equivalent thermal stress along the radial direction

    图  12  非定常等效应力耦合沿径向的时间分布

    Figure  12.  Time histories of the unsteady equivalent stress coupling along the radial direction

    图  13  模拟井筒壁厚与等效应力关系

    Figure  13.  The relationship between the wall thickness and the equivalent stress in the wellbore hole simulator

    图  14  模拟井筒加温装置

    Figure  14.  The wellbore hole simulator heating device

    图  15  加压液控系统及加压泵

    Figure  15.  The pressurized hydraulic control system and the pressure pump

    图  16  加温加压实验曲线

    Figure  16.  Heating and pressurization experimental curves

    图  17  实验与计算升温曲线

    Figure  17.  Experimental and calculated temperature rise curves

    图  18  计算升温曲线相对实验升温曲线的相对误差

    Figure  18.  The relative errors of the calculated heating curve compared to the experimental heating curve

    表  1  PcrNi3MoVA Ⅳ的力学参数

    Table  1.   Mechanical parameters of PcrNi3MoVA Ⅳ

    temperature T/℃ elastic modulus E/GPa yield strength σs/GPa Poisson’s ratio ν linear expansion coefficient β/℃-1
    20 206 1.40 0.3 1.06×10-5
    200 192 1.33
    400 175 1.15
    600 153 0.92
    800 125 0.68
    下载: 导出CSV
  • [1] SASSINE N, DONZÉ F V, HARTHONG B, et al. Thermal stress numerical study in granular packed bed storage tank[J]. Granular Matter, 2018, 20(3): 44. doi: 10.1007/s10035-018-0817-y
    [2] TALER J, DZIERWA P, JAREMKIEWICZ M. Thermal stress monitoring in thick-walled pressure components based on the solutions of the inverse heat conduction problems[J]. Multidiscipline Modeling in Materials and Structures, 2018, 41(10): 1501-1524.
    [3] KUMAR A E, NAVURI K, MANIDEEP K, et al. Effect of thermal environment on buckling of thick cylinder subjected to combined axial compressive and external pressure loads[J]. Materials Today: Proceedings, 2018, 5(2): 3298-3305. doi: 10.1016/j.matpr.2017.11.572
    [4] 赵玉峰, 刘泓杉. 非均匀长圆柱超导体的热应力分析[J]. 兰州理工大学学报, 2018, 44(6): 167-172. doi: 10.3969/j.issn.1673-5196.2018.06.031

    ZHAO Yufeng, LIU Hongshan. Analysis of thermal stress in inhomogeneous long cylindrical superco-nductor[J]. Journal of Lanzhou University of Technology, 2018, 44(6): 167-172. (in Chinese) doi: 10.3969/j.issn.1673-5196.2018.06.031
    [5] 李若愚, 王天宏. 薄板热力耦合的屈曲分析[J]. 应用数学和力学, 2020, 41(8): 877-886. doi: 10.21656/1000-0887.400308

    LI Ruoyu, WANG Tianhong. Thermo-mechanical buckling analysis of thin plates[J]. Applied Mathematics and Mechanics, 2020, 41(8): 877-886. (in Chinese) doi: 10.21656/1000-0887.400308
    [6] 申彪, 廖振强, 李洪强, 等. 厚壁圆筒热-结构耦合应力分析[J]. 弹箭与制导学报, 2019, 39(3): 49-52.

    SHEN Biao, LIAO Zhenqiang, LI Hongqiang, et al. Calculating for thermo-mechanical coupling stress in thick wall cylinders[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(3): 49-52. (in Chinese)
    [7] ALMASI A, BAGHANI M, MOALLEMI A, et al. Investigation on thermal stresses in FGM hyperelastic thick-walled cylinders[J]. Journal of Thermal Stresses, 2018, 41(2): 204-221. doi: 10.1080/01495739.2017.1395719
    [8] 杨阳, 王凯模, 沈火明, 等. 温差影响下的局部滑移接触行为的研究[J]. 应用数学和力学, 2023, 44(2): 123-132. doi: 10.21656/1000-0887.430334

    YANG Yang, WANG Kaimo, SHEN Huoming, et al. Research on partial slip contact behaviors under temperature effects[J]. Applied Mathematics and Mechanics, 2023, 44(2): 123-132. (in Chinese) doi: 10.21656/1000-0887.430334
    [9] MANTHENA V R, KEDAR G D. Transient thermal stress analysis of a functionally graded thick hollow cylinder with temperature-dependent material properties[J]. Journal of Thermal Stresses, 2018, 41(5): 568-582. doi: 10.1080/01495739.2017.1402669
    [10] TAKUMA K, JUNNOSUKE O, ATSUKI K. Large eddy simulation of turbulent natural convection between symmetrically heated vertical parallel plates for water[J]. International Journal of Heat and Mass Transfer, 2016, 101: 870-877. doi: 10.1016/j.ijheatmasstransfer.2016.04.083
    [11] HANAE D, STÉPHANE A, MOHAMED L L. Large eddy simulation of turbulent natural convection in an inclined tall cavity[J]. Numerical Heat Transfer (Part A): Applications, 2018, 74(4): 1175-1189. doi: 10.1080/10407782.2018.1509602
    [12] ORTIZ A V, KOLOSZAR L, PLANQUART P. Large eddy simulations on a natural convection boundary layer at Pr=0.1 and 0.025[J]. Nuclear Engineering and Design, 2019, 353: 1-8.
    [13] 冯志鹏, 张毅雄, 臧峰刚. 直管束流固耦合振动的数值模拟[J]. 应用数学和力学, 2013, 34(11): 1165-1172. doi: 10.3879/j.issn.1000-0887.2013.11.006

    FENG Zhipeng, ZHANG Yixiong, ZANG Fenggang. Numerical simulation of fluid-structure interaction for tube bundles[J]. Applied Mathematics and Mechanics, 2013, 34(11): 1165-1172. (in Chinese) doi: 10.3879/j.issn.1000-0887.2013.11.006
    [14] 邓诗雨, 卢涛, 邓坚, 等. 液态铅铋合金湍流普朗特数及RANS模型优选[J]. 核动力工程, 2023, 44(2): 98-103.

    DENG Shiyu, LU Tao, DENG Jian, et al. Optimization of turbulent Prandtl numbers and RANS models for liquid lead-bismuth eutectic[J]. Nuclear Power Engineering, 2023, 44(2): 98-103. (in Chinese)
    [15] 刘淼儿, 任玉新, 张涵信. 求解不可压Navier-Stokes方程的三阶精度投影方法[J]. 清华大学学报(自然科学版), 2005, 44(2): 285-288.

    LIU Miaoer, REN Yuxin, ZHANG Hanxin. Third-order projection method for solving the incompressible Navier-Stokes equations[J]. Journal of Tsinghua University (Science and Technology), 2023, 44(2): 285-288. (in Chinese)
    [16] HAFIZ U A, HODA A, ASRAR W. A numerical investigation of explicit pressure-correction projection methods for incompressible flows[J]. Engineering Applications of Computational Fluid Mechanics, 2019, 9(1): 50-65.
    [17] TABBAKH Z, SEAID M, ELLAIA R, et al. A local radial basis function projection method for incompressible flows in water eutrophication[J]. Engineering Analysis With Boundary Elements, 2019, 106: 528-540.
    [18] 超高压容器: GB/T 34019—2017[S]. 北京: 中国标准出版社, 2017.

    Ultra-high pressure vessels: GB/T 34019 —2017[S]. Beijing: Standards Press of China, 2017. (in Chinese))
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  337
  • HTML全文浏览量:  102
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 修回日期:  2023-09-21
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回