留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

求解理想磁流体方程的四阶WENO型熵稳定格式

张成治 郑素佩 陈雪 张蕊

张成治, 郑素佩, 陈雪, 张蕊. 求解理想磁流体方程的四阶WENO型熵稳定格式[J]. 应用数学和力学, 2023, 44(11): 1398-1412. doi: 10.21656/1000-0887.440178
引用本文: 张成治, 郑素佩, 陈雪, 张蕊. 求解理想磁流体方程的四阶WENO型熵稳定格式[J]. 应用数学和力学, 2023, 44(11): 1398-1412. doi: 10.21656/1000-0887.440178
ZHANG Chengzhi, ZHENG Supei, CHEN Xue, ZHANG Rui. A 4th-Order WENO-Type Entropy Stable Scheme for Ideal Magnetohydrodynamic Equations[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1398-1412. doi: 10.21656/1000-0887.440178
Citation: ZHANG Chengzhi, ZHENG Supei, CHEN Xue, ZHANG Rui. A 4th-Order WENO-Type Entropy Stable Scheme for Ideal Magnetohydrodynamic Equations[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1398-1412. doi: 10.21656/1000-0887.440178

求解理想磁流体方程的四阶WENO型熵稳定格式

doi: 10.21656/1000-0887.440178
基金项目: 

国家自然科学基金项目 11971075

详细信息
    作者简介:

    张成治(1999—),男,硕士生(E-mail: zhangchengzhi2021@163.com)

    通讯作者:

    郑素佩(1978—),女,副教授,博士,硕士生导师(通讯作者. E-mail: zsp2008@chd.edu.cn)

  • 中图分类号: O241

A 4th-Order WENO-Type Entropy Stable Scheme for Ideal Magnetohydrodynamic Equations

  • 摘要: 构造了一种用于求解理想磁流体方程的四阶熵稳定半离散有限体积格式.该格式空间方向上将高阶熵守恒通量与采用WENO重构的耗散项结合,得到高阶熵稳定通量.通过在耗散项中添加开关函数,使得数值通量具有更低的耗散并且高阶WENO重构满足符号性质.对用来控制磁场散度的源项采用中心格式离散,最终得到与熵守恒通量一致的高阶精度.几个一维、二维算例表明该格式无振荡,鲁棒性强,可以精确捕捉间断.
  • 图  1  Ryu-Jones Riemman问题

    Figure  1.  The Ryu-Jones Riemman problem

    图  2  ES-WENO格式在T=0和T=0.4对应的开关函数值

    Figure  2.  The switch function values corresponding to the ES-WENO scheme at T=0 and T=0.4

    图  3  Torrilhon Riemman问题

    Figure  3.  The Torrilhon Riemman problem

    图  4  二维Orszag-Tang漩涡问题

    Figure  4.  The 2D Orszag-Tang vortex problem

    图  5  总熵随时间变化图

    Figure  5.  The changes of the total entropy with time

    图  6  第一转子问题

    Figure  6.  The 1st rotor problem

    图  7  云-激波相互作用

    Figure  7.  Cloud-shock interactions

    表  1  T=5时不同网格数下B1L1, L误差以及对应的收敛阶

    Table  1.   L1, L errors in B1 at T=5 and corresponding convergence rates for different mesh numbers

    N L1 error order L error order
    16 9.165E-4 1.477E-3
    32 2.838E-5 5.013 4.514E-5 5.032
    64 2.100E-6 3.756 3.325E-6 3.763
    128 1.320E-7 3.992 2.076E-7 4.001
    256 8.337E-9 3.985 1.312E-8 3.984
    下载: 导出CSV
  • [1] GODUNOV S K. Symmetric form of the magnetohydrodynamic equation[J]. Chislennye Metody Mekh Sploshnoi Sredy, 1972, 3(1): 26-34.
    [2] TADMOR E. Numerical viscosity of entropy stable schemes for systems of conservation laws: Ⅰ[J]. Mathematics of Computation, 1987, 49(179): 91-103. doi: 10.1090/S0025-5718-1987-0890255-3
    [3] TADMOR E. Numerical viscosity and the entropy condition for conservative difference schemes[J]. Mathematic of Computation, 1984, 43(168): 369-381. doi: 10.1090/S0025-5718-1984-0758189-X
    [4] ROE P L. Entropy conservation schemes for Euler equations[R]. Lyon, France: Talk at HYP, 2006.
    [5] 郑素佩, 李霄, 赵青宇, 等. 求解二维浅水波方程的旋转混合格式[J]. 应用数学和力学, 2022, 43(2): 176-186. doi: 10.21656/1000-0887.420063

    ZHENG Supei, LI Xiao, ZHAO Qingyu, et al. A rotated mixed scheme for solving 2D shallow water equations[J]. Applied Mathematics and Mechanics, 2022, 43(2): 176-186. (in Chinese)) doi: 10.21656/1000-0887.420063
    [6] 贾豆, 郑素佩. 求解二维Euler方程的旋转通量混合格式[J]. 应用数学和力学, 2021, 42(2): 170-179. doi: 10.21656/1000-0887.410196

    JIA Dou, ZHENG Supei. A hybrid scheme of rotational flux for solving 2D Euler equations[J]. Applied Mathematics and Mechanics, 2021, 42(2): 170-179. (in Chinese) doi: 10.21656/1000-0887.410196
    [7] 郑素佩, 王令, 王苗苗. 求解二维浅水波方程的移动网格旋转通量法[J]. 应用数学和力学, 2020, 41(1): 42-53. doi: 10.21656/1000-0887.400124

    ZHENG Supei, WANG Ling, WANG Miaomiao. Solution of 2D shallow water wave equations with the moving-grid rotating-invariance method[J]. Applied Mathematics and Mechanics, 2020, 41(1): 42-53. (in Chinese) doi: 10.21656/1000-0887.400124
    [8] FJORDHOLM U S, MISHRA S, TADMOR E. Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws[J]. SIAM Journal on Numerical Analysis, 2012, 50(2): 544-573. doi: 10.1137/110836961
    [9] BISWAS B, DUBEY R K. Low dissipative entropy stable schemes using third order WENO and TVD reconstructions[J]. Advances in Computational Mathematics, 2017, 44(4): 1153-1181.
    [10] DUAN J, TANG H. High-order accurate entropy stable finite difference schemes for one- and two-dimensional special relativistic hydrodynamics[J]. Advances in Applied Mathematics and Mechanics, 2020, 12: 1-29. doi: 10.4208/aamm.OA-2019-0124
    [11] DUAN J, TANG H. High-order accurate entropy stable finite difference schemes for the shallow water magnetohydrodynamics[J]. Journal of Computational Physics, 2021, 431: 110136. doi: 10.1016/j.jcp.2021.110136
    [12] 郑素佩, 赵青宇, 封建湖. 基于WENO重构保号的四阶熵稳定格式[J]. 浙江大学学报(理学版), 2022, 49(3): 329-335. https://www.cnki.com.cn/Article/CJFDTOTAL-HZDX202203010.htm

    ZHENG Supei, ZHAO Qingyu, FENG Jianhu. The fourth order entropy stable scheme based on sign-preserving WENO reconstruction[J]. Journal of Zhejiang University (Science Edition), 2022, 49(3): 329-335. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZDX202203010.htm
    [13] DUAN J, TANG H. Entropy stable adaptive moving mesh schemes for 2D and 3D special relativistic hydrodynamics[J]. Journal of Computational Physics, 2021, 426: 109949.
    [14] WINTERS A R, GASSNER G J. Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations[J]. Journal of Computational Physics, 2015, 304: 72-108.
    [15] CHANDRASHEKAR P, KLINGENBERG C. Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian meshes[J]. SIAM Journal on Numerical Analysis, 2016, 54(2): 1313-1340.
    [16] 翟梦情, 李琦, 郑素佩. 求解一维理想磁流体方程的移动网格熵稳定格式[J]. 计算力学学报, 2023, 40(2): 229-236. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202302010.htm

    ZHAI Mengqing, LI Qi, ZHENG Supei. A moving-grid entropy stable scheme for the 1D ideal MHD equations[J]. Chinese Journal of Computational Mechanics, 2023, 40(2): 229-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202302010.htm
    [17] LIU Y, SHU C W, ZHANG M. Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes[J]. Journal of Computational Physics, 2018, 354: 163-178.
    [18] SHU C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes[J]. Acta Numerica, 2020, 29: 701-762.
    [19] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics, 1989, 77(2): 439-471.
    [20] ORSZAG S A, TANG C M. Small-scale structure of two-dimensional magnetohydrodynamic turbulence[J]. Journal of Fluid Mechanics, 1979, 90(1): 129-143.
    [21] BALSARA D S, SPICER D S. A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations[J]. Journal of Computational Physics, 1999, 149(2): 270-292.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  467
  • HTML全文浏览量:  165
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-13
  • 修回日期:  2023-08-02
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回