留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多壁管增强泡沫铝结构动态响应及吸能性能研究

周睿 张志家 张旺 张钱城 魏欣 随亚光 王建强 金峰

周睿, 张志家, 张旺, 张钱城, 魏欣, 随亚光, 王建强, 金峰. 多壁管增强泡沫铝结构动态响应及吸能性能研究[J]. 应用数学和力学, 2024, 45(1): 12-24. doi: 10.21656/1000-0887.440186
引用本文: 周睿, 张志家, 张旺, 张钱城, 魏欣, 随亚光, 王建强, 金峰. 多壁管增强泡沫铝结构动态响应及吸能性能研究[J]. 应用数学和力学, 2024, 45(1): 12-24. doi: 10.21656/1000-0887.440186
ZHOU Rui, ZHANG Zhijia, ZHANG Wang, ZHANG Qiancheng, WEI Xin, SUI Yaguang, WANG Jianqiang, JIN Feng. Dynamic Response and Energy Absorption Performances of Multi-Walled Tube Reinforced Aluminum Foam Structure[J]. Applied Mathematics and Mechanics, 2024, 45(1): 12-24. doi: 10.21656/1000-0887.440186
Citation: ZHOU Rui, ZHANG Zhijia, ZHANG Wang, ZHANG Qiancheng, WEI Xin, SUI Yaguang, WANG Jianqiang, JIN Feng. Dynamic Response and Energy Absorption Performances of Multi-Walled Tube Reinforced Aluminum Foam Structure[J]. Applied Mathematics and Mechanics, 2024, 45(1): 12-24. doi: 10.21656/1000-0887.440186

多壁管增强泡沫铝结构动态响应及吸能性能研究

doi: 10.21656/1000-0887.440186
基金项目: 

国家自然科学基金(面上项目) 12072250

详细信息
    作者简介:

    周睿(1997—),女,硕士生(E-mail: 1031168574@qq.com)

    通讯作者:

    王建强(1984—), 男,研究员,博士(通讯作者. E-mail: zhangzhi151@xjtu.edu.cn)

  • 中图分类号: TB301

Dynamic Response and Energy Absorption Performances of Multi-Walled Tube Reinforced Aluminum Foam Structure

  • 摘要: 为了提高泡沫铝吸能性能,该文将多壁管及泡沫铝材料相结合,提出了一种多壁管增强泡沫铝结构. 通过Hopkinson压杆试验以及有限元分析软件ABAQUS/Explicit,研究了泡沫铝、多壁管及其增强泡沫铝的动态压溃特性. 对比分析了泡沫铝复合多壁管前后的变形模式、吸能性能,并讨论了多壁管增强泡沫铝的应变率效应以及应变率对多壁管增强泡沫铝耦合增强作用的影响. 研究表明,有限元仿真能够较好地模拟试验结果. 测试结果表明所采用的泡沫铝应变率效应不明显,而多壁管及多壁管增强泡沫铝应变率效应较为明显,在高应变率下其能量吸收可进一步提升. 在动态冲击条件下,多壁管增强泡沫铝峰值力相比单一多壁管或泡沫有明显的耦合增强,其能量吸收相比单一多壁管及泡沫铝能量吸收之和提升10.34%. 通过研究多壁管增强泡沫铝的动态压溃特性,可为承载吸能构件的应用提供依据和参考.
  • 图  1  Hopkinson压杆试验装置

    Figure  1.  Hopkinson pressure bar tester

    图  2  MWTRF试样

    Figure  2.  The MWTRF specimen

    图  3  有限元模型

    Figure  3.  The finite element model

    图  4  典型的泡沫铝波形图(v=3.8 m/s)

    Figure  4.  The typical waveforms for the aluminum foam (v=3.8 m/s)

    图  5  泡沫铝的应变率

    Figure  5.  The strain rates of the aluminum foam

    图  6  AF不同应变率下的应力-应变曲线

    Figure  6.  AF stress-strain curves at different strain rates

    图  7  泡沫铝动态变形过程(41 s-1)

    Figure  7.  The dynamic deformation process of the aluminum foam (41 s-1)

    图  8  泡沫铝动态变形过程(102 s-1)

    Figure  8.  The dynamic deformation process of the aluminum foam (102 s-1)

    图  9  多壁管的应变率

    Figure  9.  Strain rates of the multiwalled tube

    图  10  EMWT应力-应变曲线试验及有限元结果对比

    Figure  10.  Comparison of EMWT stress-strain test curves with finite element results

    图  11  多壁管动态变形过程(50 s-1)

    Figure  11.  The dynamic deformation process of the multi-walled tube (50 s-1)

    图  12  多壁管动态变形过程(107 s-1)

    Figure  12.  The dynamic deformation process of the multi-walled tube (107 s-1)

    图  13  多壁管增强泡沫铝的应变率

    Figure  13.  The strain rates of the multiwalled tube reinforced aluminum foam

    图  14  MWTRF的应变率

    Figure  14.  The strain rates of the MWTRF

    图  15  MWTRF应力-应变曲线试验及有限元结果对比

    Figure  15.  Comparison of stress-strain test curves with finite element results of the MWTRF

    图  16  多壁管增强泡沫铝动态变形过程(52 s-1)

    Figure  16.  The dynamic deformation process of the aluminum foam enhanced by multi-walled tubes (52 s-1)

    图  17  多壁管增强泡沫铝动态变形过程(108 s-1)

    Figure  17.  The dynamic deformation process of the aluminum foam enhanced by multi-walled tubes (108 s-1)

    图  18  多壁管增强泡沫铝动态变形过程(143 s-1)

    Figure  18.  The dynamic deformation process of the aluminum foam enhanced by multi-walled tubes (143 s-1)

    图  19  多壁管增强泡沫铝动态变形过程(202 s-1)

    Figure  19.  The dynamic deformation process of the aluminum foam enhanced by multi-walled tubes (202 s-1)

    图  20  平均载荷随应变率的变化情况

    Figure  20.  The variations of the average load with the strain rates

    图  21  能量吸收曲线

    Figure  21.  The energy absorption curves

    图  22  能量吸收增强示意图

     为了解释图中的颜色,读者可以参考本文的电子网页版本.

    Figure  22.  Schematic diagram of enhanced energy absorption

    表  1  动态冲击试验试样参数

    Table  1.   Specimen parameters for dynamic impact tests

    specimen number height h/mm diameter d1/mm diameter d2/mm thickness t/mm mass M/g
    AF-9 40 - 56.78 - 40.4
    AF-5 40.015 - 56.715 - 43.2
    AF-1 40.04 - 56.73 - 43.8
    EMWT-2 40.00 31.80 31.80 1 16
    EMWT-3 40.08 31.92 31.92 1 16.2
    EMWT-1 40.02 31.99 31.99 1 16.2
    EMWT-4 40.08 31.95 31.95 1 16.2
    MWTRF-3 40.16 31.80 56.86 1 59
    MWTRF-4 40.092 31.92 56.77 1 58.4
    MWTRF-1 40.08 31.99 56.79 1 60.2
    MWTRF-5 40.056 31.95 56.78 1 58.2
    MWTRF-6 40.204 56.85 59.2
    下载: 导出CSV

    表  2  试验设置

    Table  2.   The test setup

    sample speed
    4 m/s 9 m/s 13 m/s 18 m/s
    AF - -
    EMWT - -
    MWTRF
    下载: 导出CSV

    表  3  材料参数

    Table  3.   Material parameters

    material density ρ/(kg/m3) Young’s modulus E/MPa yield strength σy/MPa tensile strength σt/MPa Poisson’s ratio ν
    Al6061 2 700 70 000 190 230 0.3
    Al foam 400 500 6.09 - 0.11
    下载: 导出CSV
  • [1] AL-SAHLANI K, BROXTERMANN S, LELL D, et al. Effects of particle size on the microstructure and mechanical properties of expanded glass-metal syntactic foams[J]. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 728: 80-87. doi: 10.1016/j.msea.2018.04.103
    [2] CIARDIELLO R, DRZAL L T, BELINGARDI G. Effects of carbon black and graphene nano-platelet fillers on the mechanical properties of syntactic foam[J]. Composite Structures, 2017, 178: 9-19. doi: 10.1016/j.compstruct.2017.07.057
    [3] MARX J, PORTANOVA M, RABIEI A. A study on blast and fragment resistance of composite metal foams through experimental and modeling approaches[J]. Composite Structures, 2018, 194: 652-661. doi: 10.1016/j.compstruct.2018.03.075
    [4] ZHOU R, CROCKER M J. Sound transmission loss of foam-filled honeycomb sandwich panels using statistical energy analysis and theoretical and measured dynamic properties[J]. Journal of Sound and Vibration, 2010, 329(6): 673-686. doi: 10.1016/j.jsv.2009.10.002
    [5] ASHBY M F, EVANS A, FLECK N A, et al. Metal foams: a design guide[J]. Applied Mechanics Reviews, 2002, 23(6): 119.
    [6] BANHART J. Manufacture, characterization and application of cellular metals and metal foams[J]. Progress in Materials Science, 2001, 46(6): 559-632. doi: 10.1016/S0079-6425(00)00002-5
    [7] GUO Q, LI W B, YAO W J, et al. Mechanical properties and constitutive model applied to the high-speed impact of aluminum foam that considers its meso-structural parameters[J]. Materials, 2021, 14(20): 6206. doi: 10.3390/ma14206206
    [8] BANHART J. Metal foams: production and stability[J]. Advanced Engineering Materials, 2006, 8(9): 781-794. doi: 10.1002/adem.200600071
    [9] MOVAHEDI N, CONWAY S, BELOVA I V, et al. Influence of particle arrangement on the compression of functionally graded metal syntactic foams[J]. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764: 138242. doi: 10.1016/j.msea.2019.138242
    [10] YANG K M, YANG X D, HE C N, et al. Damping characteristics of Al matrix composite foams reinforced by in-situ grown carbon nanotubes[J]. Materials Letters, 2017, 209: 68-70. doi: 10.1016/j.matlet.2017.07.126
    [11] DU Y, LI A B, ZHANG X X, et al. Enhancement of the mechanical strength of aluminum foams by SiC nanoparticles[J]. Materials Letters, 2015, 148: 79-81. doi: 10.1016/j.matlet.2015.02.066
    [12] BHOGI S, NAMPOOTHIRI J, RAVI K R, et al. Influence of nano and micro particles on the expansion and mechanical properties of aluminum foams[J]. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 685: 131-138. doi: 10.1016/j.msea.2016.12.127
    [13] DUARTE I, VENTURA E, OLHERO S, et al. A novel approach to prepare aluminium-alloy foams reinforced by carbon-nanotubes[J]. Materials Letters, 2015, 160: 162-166. doi: 10.1016/j.matlet.2015.07.115
    [14] YANG K M, YANG X D, LIU E Z, et al. Elevated temperature compressive properties and energy absorption response of in-situ grown CNT-reinforced Al composite foams[J]. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 690: 294-302. doi: 10.1016/j.msea.2017.03.004
    [15] LINUL E, MARSAVINA L, LINUL P A, et al. Cryogenic and high temperature compressive properties of metal foam matrix composites[J]. Composite Structures, 2019, 209: 490-498. doi: 10.1016/j.compstruct.2018.11.006
    [16] 杨旭东, 许佳丽, 邹田春, 等. 泡沫铝填充金属薄壁管复合结构的研究进展[J]. 材料导报, 2019, 33(21): 111-117.

    YANG Xudong, XU Jiali, ZOU Tianchun, et al. Advances in the composite structure of aluminum foam filled metal thin-walled tube[J]. Materials Reports, 2019, 33(21): 111-117. (in Chinese)
    [17] YAN L L, ZHAO Z Y, HAN B, et al. Tube enhanced foam: a novel way for aluminum foam enhancement[J]. Materials Letters, 2018, 227: 70-73. doi: 10.1016/j.matlet.2018.04.115
    [18] ZHANG Z J, HUANG L, LI B, et al. Design of a novel multi-walled tube-reinforced aluminum foam for energy absorption[J]. Composite Structures, 2021, 276: 114584. doi: 10.1016/j.compstruct.2021.114584
    [19] ZHANG Z J, WANG J, WANG Y J, et al. Elevated temperature axial crushing performance of multi-walled tube-reinforced aluminum foam[J]. Thin-Walled Structures, 2023, 185: 110582. doi: 10.1016/j.tws.2023.110582
    [20] YIN H F, XIAO Y Y, WEN G L. Multi-objective robust optimization of foam-filled bionic thin-walled structures[J]. Thin-Walled Structures, 2016, 109: 332-343. doi: 10.1016/j.tws.2016.10.011
    [21] CHEN W G, WIERZBICKI T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption[J]. Thin-Walled Structures, 2001, 39(4): 287-306. doi: 10.1016/S0263-8231(01)00006-4
    [22] SUN Y, LI Q M. Dynamic compressive behavior of cellular materials: a review of phenomenon, mechanism and modelling[J]. International Journal of Impact Engineering, 2018, 112: 74-115. doi: 10.1016/j.ijimpeng.2017.10.006
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  318
  • HTML全文浏览量:  104
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-19
  • 修回日期:  2023-11-01
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回