留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含空隙的各向同性介质Helmholtz方程扰动问题的传输特征值

李诗璇 刘立汉

李诗璇, 刘立汉. 含空隙的各向同性介质Helmholtz方程扰动问题的传输特征值[J]. 应用数学和力学, 2023, 44(11): 1389-1397. doi: 10.21656/1000-0887.440221
引用本文: 李诗璇, 刘立汉. 含空隙的各向同性介质Helmholtz方程扰动问题的传输特征值[J]. 应用数学和力学, 2023, 44(11): 1389-1397. doi: 10.21656/1000-0887.440221
LI Shixuan, LIU Lihan. Transmission Eigenvalues for Helmholtz Equation Perturbation Problems of Isotropic Media With Voids[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1389-1397. doi: 10.21656/1000-0887.440221
Citation: LI Shixuan, LIU Lihan. Transmission Eigenvalues for Helmholtz Equation Perturbation Problems of Isotropic Media With Voids[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1389-1397. doi: 10.21656/1000-0887.440221

含空隙的各向同性介质Helmholtz方程扰动问题的传输特征值

doi: 10.21656/1000-0887.440221
基金项目: 

国家自然科学基金青年科学基金项目 12001075

重庆市自然科学基金面上项目 cstc2020jcyj-msxmX0167

重庆市教育委员会科学技术研究计划项目重点项目 KJZD-K202100503

重庆市教育委员会科学技术研究计划项目重点项目 KJZD-K202300506

重庆市留学人员回国创业创新支持计划项目 cx2021061

重庆市留学人员回国创业创新支持计划项目 cx2019022

重庆市巴渝学者计划 BYQNCS2020002

重庆市高校创新研究群体项目 CXQT20014

详细信息
    作者简介:

    李诗璇(1998—),女,硕士生(E-mail: 1246427977@qq.com)

    通讯作者:

    刘立汉(1987—),男,教授,博士,硕士生导师(通讯作者. E-mail: mathsedu2013@163.com)

  • 中图分类号: O29

Transmission Eigenvalues for Helmholtz Equation Perturbation Problems of Isotropic Media With Voids

  • 摘要: 传输特征值在反散射唯一性理论中具有十分重要的意义.在含空隙的各向同性非均匀介质折射率扰动下,研究了Helmholtz方程传输特征值的存在性问题.首先,通过构造Neumann-Dirichlet算子,建立传输特征值问题的等价形式.然后,进一步构造特征值函数,将扰动的传输特征值问题转化为算子为零特征值的扰动问题.最后,利用隐函数定理的扰动方法证明传输特征值的存在性.
  • 图  1  含有空隙介质的结构

    Figure  1.  Configuration of the media with voids

  • [1] CAKONI F, COLTON D, HADDAR H. On the determination of Dirichlet or transmission eigenvalues from far field data[J]. Comptes Rendus Mathematique, 2010, 348(7/8): 379-383.
    [2] COLTON D L, KRESS R. Inverse Acoustic and Electromagnetic Scattering Theory[M]. Berlin: Springer, 1998.
    [3] CAKONI F, GINTIDES D, HADDAR H. The existence of an infinite discrete set of transmission eigenvalues[J]. SIAM Journal on Mathematical Analysis, 2010, 42(1): 237-255. doi: 10.1137/090769338
    [4] SYLVESTER J. Discreteness of transmission eigenvalues via upper triangular compact operators[J]. SIAM Journal on Mathematical Analysis, 2012, 44(1): 341-354. doi: 10.1137/110836420
    [5] COLTON D, PAIVARINTA L, SYLVESTER J. The interior transmission problem[J]. Inverse Problems and Imaging, 2007, 1(1): 13-28. doi: 10.3934/ipi.2007.1.13
    [6] COLTON D, LEUNG Y J. Complex eigenvalues and the inverse spectral problem for transmission eigenvalues[J]. Inverse Problems, 2013, 29(10): 104008. doi: 10.1088/0266-5611/29/10/104008
    [7] ROBBIANO L. Spectral analysis of the interior transmission eigenvalue problem[J]. Inverse Problems, 2013, 29(10): 104001. doi: 10.1088/0266-5611/29/10/104001
    [8] NGUYEN H M, NGUYEN Q H. The Weyl law of transmission eigenvalues and the completeness of generalized transmission eigenfunctions[J]. Journal of Functional Analysis, 2021, 281(8): 109146. doi: 10.1016/j.jfa.2021.109146
    [9] 陈林冲, 李小林. 二维Helmholtz方程的插值型边界无单元法[J]. 应用数学和力学, 2018, 39(4): 470-484. doi: 10.21656/1000-0887.380202

    CHEN Linchong, LI Xiaolin. An interpolating boundary element-free method for 2D Helmholtz equations[J]. Applied Mathematics and Mechanics, 2018, 39(4): 470-484. (in Chinese) doi: 10.21656/1000-0887.380202
    [10] 戴海, 潘文峰. 谱元法求解Helmholtz方程透射特征值问题[J]. 应用数学和力学, 2018, 39(7): 833-840. doi: 10.21656/1000-0887.380327

    DAI Hai, PAN Wenfeng. A spectral element method for transmission eigenvalue problems of the Helmholtz equation[J]. Applied Mathematics and Mechanics, 2018, 39(7): 833-840. (in Chinese) doi: 10.21656/1000-0887.380327
    [11] PÄIVÄRINTA L, SYLVESTER J. Transmission eigenvalues[J]. SIAM Journal on Mathematical Analysis, 2008, 40(2): 738-753. doi: 10.1137/070697525
    [12] CAKONI F, HADDAR H. On the existence of transmission eigenvalues in an inhomogeneous medium[J]. Applicable Analysis, 2009, 88(4): 475-493. doi: 10.1080/00036810802713966
    [13] SYLVESTER J. Discreteness of transmission eigenvalues via upper triangular compact operators[J]. SIAM Journal on Mathematical Analysis, 2012, 44(1): 341-354. doi: 10.1137/110836420
    [14] CAKONI F, COLTON D, HADDAR H. The interior transmission problem for regions with cavities[J]. SIAM Journal on Mathematical Analysis, 2010, 42(1): 145-162. doi: 10.1137/090754637
    [15] COSSONNIÈRE A, HADDAR H. The electromagnetic interior transmission problem for regions with cavities[J]. SIAM Journal on Mathematical Analysis, 2011, 43(4): 1698-1715. doi: 10.1137/100813890
    [16] COLTON D, LEUNG Y J, MENG S. Distribution of complex transmission eigenvalues for spherically stratified media[J]. Inverse Problems, 2015, 31(3): 035006. doi: 10.1088/0266-5611/31/3/035006
    [17] COLTON D, LEUNG Y J. The existence of complex transmission eigenvalues for spherically stratified media[J]. Applicable Analysis, 2017, 96(1): 39-47. doi: 10.1080/00036811.2016.1210788
    [18] AMBROSE D M, CAKONI F, MOSKOW S. A perturbation problem for transmission eigenvalues[J]. Research in the Mathematical Sciences, 2022, 9(1): 1-16. doi: 10.1007/s40687-021-00298-9
    [19] CAKONI F, COLTON D, HADDAR H. Inverse Scattering Theory and Transmission Eigenvalues[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2016.
    [20] RYNNE B P, SLEEMAN B D. The interior transmission problem and inverse scattering from inhomogeneous media[J]. SIAM Journal on Mathematical Analysis, 1991, 22(6): 1755-1762. doi: 10.1137/0522109
    [21] HURWICZ L, RICHTER M K. Implicit functions and diffeomorphisms without C1[J]. Advances in Mathematical Economics, 2003, 5: 65-96.
    [22] RELLICH F. Perturbation Theory of Eigenvalue Problems[M]. New York: Gordon and Breach Science Publishers, 1969.
    [23] KATO T. Perturbation Theory for Linear Operators[M]. Berlin: Springer, 2013.
  • 加载中
图(1)
计量
  • 文章访问数:  387
  • HTML全文浏览量:  103
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-18
  • 修回日期:  2023-09-05
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回