留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Hamilton体系的功能梯度矩形板自由振动问题的解析解

张继超 钟心雨 陈一鸣 石越卿 郭程洁 李锐

张继超, 钟心雨, 陈一鸣, 石越卿, 郭程洁, 李锐. 基于Hamilton体系的功能梯度矩形板自由振动问题的解析解[J]. 应用数学和力学, 2024, 45(9): 1157-1171. doi: 10.21656/1000-0887.440279
引用本文: 张继超, 钟心雨, 陈一鸣, 石越卿, 郭程洁, 李锐. 基于Hamilton体系的功能梯度矩形板自由振动问题的解析解[J]. 应用数学和力学, 2024, 45(9): 1157-1171. doi: 10.21656/1000-0887.440279
ZHANG Jichao, ZHONG Xinyu, CHEN Yiming, SHI Yueqing, GUO Chengjie, LI Rui. Hamiltonian System-Based Analytical Solutions to Free Vibration Problems of Functionally Graded Rectangular Plates[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1157-1171. doi: 10.21656/1000-0887.440279
Citation: ZHANG Jichao, ZHONG Xinyu, CHEN Yiming, SHI Yueqing, GUO Chengjie, LI Rui. Hamiltonian System-Based Analytical Solutions to Free Vibration Problems of Functionally Graded Rectangular Plates[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1157-1171. doi: 10.21656/1000-0887.440279

基于Hamilton体系的功能梯度矩形板自由振动问题的解析解

doi: 10.21656/1000-0887.440279
(我刊编委李锐来稿)
基金项目: 

国家自然科学基金 12372067

国家自然科学基金 12022209

国家自然科学基金 11972103

详细信息

Hamiltonian System-Based Analytical Solutions to Free Vibration Problems of Functionally Graded Rectangular Plates

(Contributed by LI Rui, M.AMM Editorial Board)
  • 摘要: 对于功能梯度矩形板的自由振动问题,寻求既满足高阶偏微分控制方程又满足各种非Lévy型边界条件的振型函数十分困难,这使得利用传统方法难以解析求解该类问题. 该文拓展了近年来发展的基于Hamilton体系的辛叠加方法,将其成功应用于功能梯度矩形板自由振动问题的解析求解. 求解方案将原问题拆分成子问题,并引入物理中性面消除了由于横向材料不均匀产生的拉弯耦合效应,采用在传统Lagrange体系中无法使用的分离变量、辛本征展开等数学方法对子问题进行求解,最后通过叠加获得了原问题的解答. 辛叠加方法的优点是不需要事先假定解的形式,克服了传统半逆解法的限制,能够获得更多复杂问题的解析解. 将该方法的求解结果与数值解进行对比,证明了其正确性,并在此基础上进行了定量的参数分析,研究了不同边界条件、材料分布和长宽比对板固有频率的影响.
    1)  (我刊编委李锐来稿)
  • 图  1  功能梯度板示意图

    Figure  1.  Schematic diagram of a functionally graded plate

    图  2  材料属性沿板厚度方向变化图

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  Variations of material properties along the direction of the plate thickness

    图  3  CCCC板辛叠加示意图

    Figure  3.  Schematic diagram of symplectic superposition for a CCCC plate

    图  4  CCCC功能梯度方板的前十阶振型

    Figure  4.  The first ten mode shapes of a CCCC functionally graded square plate

    图  5  CCCS功能梯度方板的前十阶振型

    Figure  5.  The first ten mode shapes of a CCCS functionally graded square plate

    图  6  CCSS功能梯度方板的前十阶振型

    Figure  6.  The first ten mode shapes of a CCSS functionally graded square plate

    图  7  不同边界和长宽比下功能梯度矩形板的基频参数随体积分数指数k变化

    Figure  7.  Fundamental frequency parameters vs. volume fraction index k of functionally graded rectangular plates with different boundaries and aspect ratios

    表  1  CCCC功能梯度矩形板的前十阶无量纲固有频率参数$\omega a^{2} \sqrt{\rho_{\mathrm{c}} h / D_{\mathrm{c}}}$的收敛性研究

    Table  1.   Convergence study of the first ten non-dimensional natural frequency parameters $\omega a^{2} \sqrt{\rho_{\mathrm{c}} h / D_{\mathrm{c}}}$ of CCCC functionally graded rectangular plates

    b/a N mode
    1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
    1 5 21.724 44.299 44.299 65.274 79.437 79.786 99.522 99.522 127.00 127.00
    10 21.725 44.309 44.309 65.331 79.437 79.813 99.610 99.610 127.09 127.09
    20 21.725 44.309 44.309 65.332 79.437 79.814 99.613 99.613 127.09 127.09
    30 21.725 44.309 44.309 65.332 79.437 79.814 99.613 99.613 127.09 127.09
    40 21.725 44.309 44.309 65.332 79.437 79.814 99.613 99.613 127.09 127.09
    50 21.725 44.309 44.309 65.332 79.437 79.814 99.613 99.613 127.09 127.09
    2 5 14.837 19.197 27.008 38.073 38.622 42.865 50.208 52.530 60.423 74.227
    10 14.838 19.214 27.027 38.232 38.627 42.909 50.268 52.671 60.843 70.241
    20 14.838 19.214 27.028 38.234 38.628 42.910 50.273 52.676 60.850 70.247
    30 14.838 19.214 27.028 38.234 38.628 42.910 50.273 52.676 60.850 70.247
    40 14.838 19.214 27.028 38.234 38.628 42.910 50.273 52.676 60.850 70.247
    50 14.838 19.214 27.028 38.234 38.628 42.910 50.273 52.676 60.850 70.247
    下载: 导出CSV

    表  2  CCCC功能梯度矩形板的前十阶无量纲固有频率参数$\omega a^{2} \sqrt{\rho_{\mathrm{c}} h / D_{\mathrm{c}}}$

    Table  2.   The first ten non-dimensional natural frequency parameters $\omega a^{2} \sqrt{\rho_{\mathrm{c}} h / D_{\mathrm{c}}}$ of CCCC functionally graded rectangular plates

    b/a k method mode
    1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
    1 0 present 35.985 73.394 73.394 108.22 131.58 132.20 165.00 165.00 210.52 210.52
    FEM 35.987 73.405 73.405 108.23 131.63 132.25 165.04 165.04 210.64 210.64
    ref. [24] 35.983 73.384 73.384 108.19 131.57
    0.2 present 33.394 68.108 68.108 100.42 122.10 122.68 153.12 153.12 195.36 195.36
    FEM 33.402 68.128 68.128 100.45 122.16 122.74 153.18 153.18 195.50 195.50
    0.5 present 30.470 62.146 62.146 91.632 111.42 111.94 139.71 139.71 178.26 178.26
    FEM 30.475 62.160 62.160 91.650 111.46 111.99 139.76 139.76 178.37 178.37
    ref. [24] 30.468 62.137 62.137 91.611 111.41
    1 present 27.457 55.999 55.999 82.569 100.40 100.87 125.89 125.89 160.63 160.63
    FEM 27.459 56.008 56.008 82.581 100.43 100.91 125.93 125.93 160.72 160.72
    ref. [24] 27.454 55.991 55.991 82.548 100.38
    2 present 24.963 50.913 50.913 75.070 91.277 91.710 114.46 114.46 146.04 146.04
    FEM 24.964 50.921 50.921 75.080 91.308 91.741 114.49 114.49 146.12 146.12
    ref. [24] 24.961 50.904 50.904 75.048 91.262
    5 present 23.669 48.273 48.273 71.178 86.545 86.955 108.53 108.53 138.47 138.47
    FEM 23.670 48.280 48.280 71.186 86.573 86.984 108.55 108.55 138.55 138.55
    10 present 22.920 46.746 46.746 68.926 83.807 84.205 105.09 105.09 134.09 134.09
    FEM 22.921 46.752 46.752 68.933 83.833 84.231 105.12 105.12 134.16 134.16
    20 present 21.725 44.309 44.309 65.332 79.437 79.814 99.613 99.613 127.09 127.09
    FEM 21.725 44.313 44.313 65.336 79.458 79.835 99.631 99.631 127.16 127.16
    2 0 present 24.578 31.826 44.770 63.331 63.983 71.076 83.273 87.253 100.79 116.36
    FEM 24.579 31.827 44.773 63.338 63.996 71.088 83.284 87.269 100.80 116.39
    0.2 present 22.808 29.534 41.546 58.770 58.770 65.958 77.276 80.969 93.533 107.98
    FEM 22.814 29.541 41.555 58.785 59.395 65.977 77.296 80.995 93.557 108.02
    0.5 present 20.811 26.949 37.909 53.625 54.178 60.184 70.511 73.881 85.345 98.525
    FEM 20.816 26.953 37.914 53.635 54.192 60.197 70.525 73.899 85.361 98.558
    1 present 18.753 24.283 34.159 48.321 48.819 54.231 63.537 66.573 76.904 88.780
    FEM 18.754 24.285 34.162 48.327 48.829 54.240 63.546 66.586 76.914 88.805
    2 present 17.050 22.078 31.057 43.932 44.385 49.305 57.766 60.527 69.919 80.717
    FEM 17.051 22.079 31.059 43.937 44.394 49.313 57.774 60.538 69.928 80.739
    5 present 16.166 20.933 29.446 41.655 42.084 46.749 54.771 57.389 66.294 76.532
    FEM 16.167 20.934 29.448 41.659 42.091 46.756 54.778 57.399 66.302 76.552
    10 present 15.654 20.271 28.515 40.337 40.752 45.270 53.038 55.573 64.197 74.111
    FEM 15.656 20.272 28.516 40.341 40.759 45.276 53.044 55.582 64.203 74.129
    20 present 14.838 19.214 27.028 38.234 38.628 42.910 50.273 52.676 60.850 70.247
    FEM 14.839 19.214 27.029 38.236 38.633 42.914 50.276 52.682 60.853 70.261
    下载: 导出CSV

    表  3  CCCS功能梯度矩形板的前十阶无量纲固有频率参数$\omega a^{2} \sqrt{\rho_{\mathrm{c}} h / D_{\mathrm{c}}}$

    Table  3.   The first ten non-dimensional natural frequency parameters $\omega a^{2} \sqrt{\rho_{\mathrm{c}} h / D_{\mathrm{c}}}$ of CCCS functionally graded rectangular plates

    b/a k method mode
    1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
    1 0 present 31.826 63.331 71.076 100.79 116.36 130.35 151.89 159.48 189.77 209.32
    FEM 31.827 63.338 71.088 100.80 116.39 130.40 151.92 159.52 189.86 209.37
    0.2 present 29.534 58.770 65.958 93.533 107.98 120.96 140.95 147.99 176.10 194.25
    FEM 29.541 58.785 65.977 93.557 108.02 121.02 141.00 148.05 176.21 194.32
    0.5 present 26.949 53.625 60.184 85.346 98.525 110.37 128.62 135.04 160.69 177.24
    FEM 26.953 53.635 60.197 85.361 98.558 110.42 128.65 135.08 160.78 177.30
    1 present 24.283 48.321 54.231 76.904 88.780 99.458 115.89 121.68 144.79 159.71
    FEM 24.285 48.327 54.240 76.914 88.805 99.493 115.92 121.71 144.87 159.75
    2 present 22.078 43.932 49.306 69.919 80.717 90.424 105.37 110.63 131.64 145.21
    FEM 22.079 43.937 49.313 69.928 80.739 90.456 105.39 110.66 131.71 145.24
    5 present 20.933 41.655 46.749 66.294 76.532 85.736 99.905 104.89 124.82 137.68
    FEM 20.934 41.659 46.756 66.302 76.552 85.765 99.924 104.92 124.88 137.71
    10 present 20.271 40.337 45.270 64.197 74.111 83.024 96.744 101.57 120.87 133.32
    FEM 20.272 40.341 45.276 64.203 74.129 83.050 96.762 101.60 120.93 133.35
    20 present 19.214 38.234 42.910 60.850 70.247 78.695 91.700 96.278 114.57 126.37
    FEM 19.214 38.236 42.914 60.853 70.261 78.716 91.712 96.296 114.62 126.39
    2 0 present 24.143 30.249 41.751 58.852 63.741 70.141 81.291 81.367 97.545 109.11
    FEM 24.145 30.251 41.753 58.858 63.754 70.153 81.302 81.380 97.557 109.14
    0.2 present 22.404 28.071 38.744 54.614 59.151 65.090 75.437 75.507 90.521 101.25
    FEM 22.411 28.077 38.752 54.627 59.171 65.109 75.457 75.530 90.544 101.29
    0.5 present 20.443 25.613 35.352 49.833 53.973 59.392 68.833 68.897 82.596 92.390
    FEM 20.448 25.618 35.357 49.841 53.987 59.406 68.847 68.913 82.611 92.419
    1 present 18.421 23.080 31.856 44.904 48.634 53.518 62.025 62.083 74.427 83.252
    FEM 18.422 23.081 31.858 44.909 48.644 53.527 62.034 62.093 74.436 83.273
    2 present 16.748 20.984 28.962 40.826 44.217 48.657 56.392 56.444 75.691 75.691
    FEM 16.749 20.985 28.964 40.830 44.226 48.665 56.399 56.453 67.675 75.709
    5 present 15.879 19.896 27.461 38.709 41.925 46.134 53.468 53.518 64.159 71.766
    FEM 15.881 19.897 27.462 38.713 41.932 46.141 53.474 53.526 64.166 71.783
    10 present 15.377 19.266 26.592 37.485 40.598 44.675 51.777 51.825 62.129 69.496
    FEM 15.379 19.267 26.593 37.487 40.605 44.681 51.782 51.832 62.135 69.511
    20 present 14.575 18.262 25.206 35.530 38.482 42.345 49.077 49.123 58.890 65.873
    FEM 14.576 18.262 25.206 35.531 38.487 42.349 49.080 49.127 58.893 65.884
    下载: 导出CSV

    表  4  CCSS功能梯度矩形板的前十阶无量纲固有频率参数$\omega a^{2} \sqrt{\rho_{\mathrm{c}} h / D_{\mathrm{c}}}$

    Table  4.   The first ten non-dimensional natural frequency parameters $\omega a^{2} \sqrt{\rho_{\mathrm{c}} h / D_{\mathrm{c}}}$ of CCSS functionally graded rectangular plates

    b/a k method mode
    1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
    1 0 present 27.054 60.538 60.786 92.836 114.56 114.70 145.78 146.08 188.46 188.55
    FEM 27.055 60.546 60.793 92.846 114.59 114.74 145.81 146.11 188.56 188.65
    0.2 present 25.106 56.179 56.409 86.150 106.31 106.44 135.28 135.56 174.89 174.97
    FEM 25.112 56.193 56.423 86.171 106.35 106.49 135.33 135.61 175.00 175.09
    0.5 present 22.908 51.261 51.471 78.609 97.000 97.125 123.44 123.69 159.58 159.66
    FEM 22.912 51.270 51.480 78.622 97.034 97.159 123.47 123.73 159.67 159.75
    1 present 20.642 46.191 46.380 70.834 87.406 87.519 111.23 111.46 143.79 143.86
    FEM 20.643 46.197 46.385 70.842 87.432 87.544 111.25 111.48 143.87 143.94
    2 present 18.767 41.995 42.167 64.400 79.468 79.570 101.13 101.34 130.73 130.80
    FEM 18.768 42.000 42.172 64.407 79.490 79.592 101.15 101.36 130.80 130.87
    5 present 17.794 39.818 39.981 61.061 75.347 75.444 95.885 96.082 124.02 124.02
    FEM 17.795 39.822 39.985 61.067 75.368 75.465 95.904 96.101 123.96 124.02
    10 present 17.231 38.558 38.716 59.130 72.964 73.058 92.851 93.042 120.04 120.09
    FEM 17.232 38.562 38.720 59.134 72.982 73.076 92.868 93.059 120.09 120.15
    20 present 16.333 36.548 36.698 56.047 69.159 69.249 88.010 88.191 113.78 113.83
    FEM 16.333 36.550 36.700 56.049 69.174 69.263 88.022 88.203 113.83 113.88
    2 0 present 17.769 25.198 37.973 52.342 55.988 59.586 71.882 79.117 89.337 106.65
    FEM 17.770 25.199 37.975 52.350 55.994 59.593 71.889 79.130 89.347 106.68
    0.2 present 16.489 23.383 35.239 48.573 51.956 55.295 66.705 73.419 82.904 98.968
    FEM 16.495 23.389 35.246 48.587 51.969 55.309 66.721 73.441 82.923 99.012
    0.5 present 15.046 21.336 32.154 44.321 47.408 50.454 60.866 66.992 75.646 90.304
    FEM 15.050 21.340 32.159 44.331 47.416 50.464 60.876 67.008 75.658 90.338
    1 present 13.558 19.226 28.973 39.937 42.719 45.464 54.846 60.366 68.164 81.372
    FEM 13.559 19.227 28.975 39.943 42.724 45.470 54.852 60.376 68.172 81.399
    2 present 12.326 17.480 26.342 36.310 38.839 41.334 49.864 54.883 61.973 73.981
    FEM 12.327 17.481 26.344 36.315 38.843 41.339 49.869 54.892 61.979 74.005
    5 present 11.687 16.574 24.976 34.427 36.825 39.191 47.279 52.038 58.760 70.146
    FEM 11.688 16.574 24.978 34.432 36.829 39.196 47.283 52.046 58.765 70.167
    10 present 11.318 16.049 24.186 33.338 35.660 37.952 45.783 50.391 56.901 67.927
    FEM 11.319 16.050 24.187 33.342 35.663 37.955 45.787 50.399 56.905 67.947
    20 present 10.727 15.212 22.925 31.600 33.801 35.973 43.396 47.764 53.934 64.385
    FEM 10.729 15.213 22.925 31.603 33.802 35.975 43.398 47.769 53.936 64.401
    下载: 导出CSV
  • [1] KOIZUMI M. The concept of FGM[J]. Ceramic Transactions, 1993, 34: 3-10.
    [2] THAI H T, KIM S E. A review of theories for the modeling and analysis of functionally graded plates and shells[J]. Composite Structures, 2015, 128: 70-86. doi: 10.1016/j.compstruct.2015.03.010
    [3] PINGULKAR P, SURESHA B. Free vibration analysis of laminated composite plates using finite element method[J]. Polymers and Polymer Composites, 2016, 24(7): 529-538. doi: 10.1177/096739111602400712
    [4] VINYAS M. A higher-order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods[J]. Composites (Part B): Engineering, 2019, 158: 286-301. doi: 10.1016/j.compositesb.2018.09.086
    [5] CHEN M F, JIN G Y, YE T G, et al. An isogeometric finite element method for the in-plane vibration analysis of orthotropic quadrilateral plates with general boundary restraints[J]. International Journal of Mechanical Sciences, 2017, 133: 846-862. doi: 10.1016/j.ijmecsci.2017.09.052
    [6] 李情, 陈莘莘. 基于重构边界光滑离散剪切间隙法的复合材料层合板自由振动分析[J]. 应用数学和力学, 2022, 43(10): 1123-1132. doi: 10.21656/1000-0887.430109

    LI Qing, CHEN Shenshen. Free vibration analysis of laminated composite plates based on the reconstructed edge-based smoothing DSG method[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1123-1132. (in Chinese) doi: 10.21656/1000-0887.430109
    [7] BESKOS D E. Boundary element methods in dynamic analysis[J]. Applied Mechanics Reviews, 1987, 40(1): 1-23. doi: 10.1115/1.3149529
    [8] NAJARZADEH L, MOVAHEDIAN B, AZHARI M. Free vibration and buckling analysis of thin plates subjected to high gradients stresses using the combination of finite strip and boundary element methods[J]. Thin-Walled Structures, 2018, 123: 36-47. doi: 10.1016/j.tws.2017.11.015
    [9] CHEN J T, CHEN I L, CHEN K H, et al. A meshless method for free vibration analysis of circular and rectangular clamped plates using radial basis function[J]. Engineering Analysis With Boundary Elements, 2004, 28(5): 535-545. doi: 10.1016/S0955-7997(03)00106-1
    [10] WANG J F, YANG J P, LAI S K, et al. Stochastic meshless method for nonlinear vibration analysis of composite plate reinforced with carbon fibers[J]. Aerospace Science and Technology, 2020, 105: 105919. doi: 10.1016/j.ast.2020.105919
    [11] YOUNG D. Vibration of rectangular plates by the Ritz method[J]. Journal of Applied Mechanics: Transactions of the ASME, 1950, 17(4): 448-453. doi: 10.1115/1.4010175
    [12] LEISSA A W. The free vibration of rectangular plates[J]. Journal of Sound and Vibration, 1973, 31(3): 257-293. doi: 10.1016/S0022-460X(73)80371-2
    [13] QIN B, ZHONG R, WU Q Y, et al. A unified formulation for free vibration of laminated plate through Jacobi-Ritz method[J]. Thin-Walled Structures, 2019, 144: 106354. doi: 10.1016/j.tws.2019.106354
    [14] 鲍四元, 邓子辰. 薄板弯曲自由振动问题的高精度近似解析解及改进研究[J]. 应用数学和力学, 2016, 37(11): 1169-1180. doi: 10.21656/1000-0887.370005

    BAO Siyuan, DENG Zichen. High-precision approximate analytical solutions for free bending vibrations of thin plates and an improvement[J]. Applied Mathematics and Mechanics, 2016, 37(11): 1169-1180. (in Chinese) doi: 10.21656/1000-0887.370005
    [15] 王永福, 漆文凯, 沈承, 等. 弹性约束边界条件下矩形蜂窝夹芯板的自由振动分析[J]. 应用数学和力学, 2019, 40(6): 583-594. doi: 10.21656/1000-0887.390348

    WANG Yongfu, QI Wenkai, SHEN Cheng, et al. Free vibration analysis of rectangular honeycomb-cored plates under elastically constrained boundary conditions[J]. Applied Mathematics and Mechanics, 2019, 40(6): 583-594. (in Chinese) doi: 10.21656/1000-0887.390348
    [16] WANG X, BERT C W. A new approach in applying differential quadrature to static and free vibrational analyses of beams and plates[J]. Journal of Sound and Vibration, 1993, 162(3): 566-572. doi: 10.1006/jsvi.1993.1143
    [17] TORNABENE F, LIVERANI A, CALIGIANA G. FGM and laminated doubly curved shells and panels of revolution with a free-form meridian: a 2-D GDQ solution for free vibrations[J]. International Journal of Mechanical Sciences, 2011, 53(6): 446-470. doi: 10.1016/j.ijmecsci.2011.03.007
    [18] WANG Y, FENG C, YANG J, et al. Nonlinear vibration of FG-GPLRC dielectric plate with active tuning using differential quadrature method[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 379: 113761. doi: 10.1016/j.cma.2021.113761
    [19] ZHANG C Y, JIN G Y, YE T G, et al. Harmonic response analysis of coupled plate structures using the dynamic stiffness method[J]. Thin-Walled Structures, 2018, 127: 402-415. doi: 10.1016/j.tws.2018.02.014
    [20] AKSU G, ALI R. Free vibration analysis of stiffened plates using finite-difference method[J]. Journal of Sound and Vibration, 1976, 48(1): 15-25. doi: 10.1016/0022-460X(76)90367-9
    [21] QU W, HE H. A GFDM with supplementary nodes for thin elastic plate bending analysis under dynamic loading[J]. Applied Mathematics Letters, 2022, 124: 107664. doi: 10.1016/j.aml.2021.107664
    [22] HIEN T D, NOH H C. Stochastic isogeometric analysis of free vibration of functionally graded plates considering material randomness[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 318: 845-863. doi: 10.1016/j.cma.2017.02.007
    [23] KUMAR S, RANJAN V, JANA P. Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method[J]. Composite Structures, 2018, 197: 39-53. doi: 10.1016/j.compstruct.2018.04.085
    [24] YIN S H, HALE J S, YU T T, et al. Isogeometric locking-free plate element: a simple first order shear deformation theory for functionally graded plates[J]. Composite Structures, 2014, 118: 121-138. doi: 10.1016/j.compstruct.2014.07.028
    [25] THANG P T, LEE J. Free vibration characteristics of sigmoid-functionally graded plates reinforced by longitudinal and transversal stiffeners[J]. Ocean Engineering, 2018, 148: 53-61. doi: 10.1016/j.oceaneng.2017.11.023
    [26] JHA D K, KANT T, SINGH R K. Free vibration response of functionally graded thick plates with shear and normal deformations effects[J]. Composite Structures, 2013, 96: 799-823. doi: 10.1016/j.compstruct.2012.09.034
    [27] KIM J, ZUR K K, REDDY J N. Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates[J]. Composite Structures, 2019, 209: 879-888. doi: 10.1016/j.compstruct.2018.11.023
    [28] 高祥雨, 王壮壮, 马连生. 功能梯度板弯曲和自由振动分析的简单精化板理论[J]. 固体力学学报, 2023, 44(1): 96-108.

    GAO Xiangyu, WANG Zhuangzhuang, MA Liansheng. A simple refined plate theory for bending and free vibration analysis of functionally graded plate[J]. Chinese Journal of Solid Mechanics, 2023, 44(1): 96-108. (in Chinese)
    [29] BAFERANI A H, SAIDI A R, JOMEHZADEH E. An exact solution for free vibration of thin functionally graded rectangular plates[J]. Proceedings of the Institution of Mechanical Engineers (Part C): Journal of Mechanical Engineering Science, 2011, 225(3): 526-536. doi: 10.1243/09544062JMES2171
    [30] FARSANGI M A A, SAIDI A R. Lévy type solution for free vibration analysis of functionally graded rectangular plates with piezoelectric layers[J]. Smart Materials and Structures, 2012, 21(9): 094017. doi: 10.1088/0964-1726/21/9/094017
    [31] DEMIRHAN P A, TASKIN V. Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach[J]. Composites (Part B): Engineering, 2019, 160: 661-676. doi: 10.1016/j.compositesb.2018.12.020
    [32] HU Z, YANG Y, ZHOU C, et al. On the symplectic superposition method for new analytic free vibration solutions of side-cracked rectangular thin plates[J]. Journal of Sound and Vibration, 2020, 489: 115695. doi: 10.1016/j.jsv.2020.115695
    [33] HU Z, ZHOU C, NI Z, et al. New symplectic analytic solutions for buckling of CNT reinforced composite rectangular plates[J]. Composite Structures, 2023, 303: 116361. doi: 10.1016/j.compstruct.2022.116361
    [34] XU D, XIONG S, MENG F, et al. An analytic model of transient heat conduction for bi-layered flexible electronic heaters by symplectic superposition[J]. Micromachines, 2022, 13(10): 1627. doi: 10.3390/mi13101627
    [35] YANG Y, AN D, XU H, et al. On the symplectic superposition method for analytic free vibration solutions of right triangular plates[J]. Archive of Applied Mechanics, 2021, 91(1): 187-203. doi: 10.1007/s00419-020-01763-7
    [36] 杨雨诗, 安东琦, 倪卓凡, 等. 四角点支承四边自由矩形薄板屈曲问题的新解析解[J]. 计算力学学报, 2020, 37(5): 517-523.

    YANG Yushi, AN Dongqi, NI Zhuofan, et al. A new analytic solution to the buckling problem of rectangular thin plates with four corners point-supported and four edges free[J]. Chinese Journal of Computional Mechaincs, 2020, 37(5): 517-523. (in Chinese)
    [37] 李锐, 田宇, 郑新然, 等. 求解弹性地基上自由矩形中厚板弯曲问题的辛-叠加方法[J]. 应用数学和力学, 2018, 39(8): 875-891. doi: 10.21656/1000-0887.390186

    LI Rui, TIAN Yu, ZHENG Xinran, et al. A symplectic superposition method for bending problems of free-edge rectangular thick plates resting on elastic foundations[J]. Applied Mathematics and Mechanics, 2018, 39(8): 875-891. (in Chinese) doi: 10.21656/1000-0887.390186
    [38] ZHANG D, ZHOU Y. A theoretical analysis of FGM thin plates based on physical neutral surface[J]. Computational Materials Science, 2008, 44(2): 716-720. doi: 10.1016/j.commatsci.2008.05.016
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  29
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-20
  • 修回日期:  2023-11-05
  • 刊出日期:  2024-09-01

目录

    /

    返回文章
    返回