[2]HE F, ZHANG H S, HUANG C, et al. Numerical investigation of the solitary wave breaking over a slope by using the finite particle method[J].Coastal Engineering,2020,156: 103617.
|
LUCY L B. A numerical approach to the testing of the fission hypothesis[J].The Astronomical Journal,1977,82: 1013.
|
[3]HE F, ZHANG H S, HUANG C, et al. A stable SPH model with large CFL numbers for multi-phase flows with large density ratios[J].Journal of Computational Physics,2022,453: 110944.
|
[4]〖JP2〗FENG D Y, IMIN R. A kernel derivative free SPH method[J].Results in Applied Mathematics,2023,17: 100355.
|
[5]HUANG C, LEI J M, LIU M B, et al. A kernel gradient free (KGF) SPH method[J].International Journal for Numerical Methods in Fluids,2015,78(11): 691-707.
|
[6]MAATOUK K. Third order derivative free SPH iterative method for solving nonlinear systems[J].Applied Mathematics and Computation,2015,270: 557-566.
|
[7]IMIN R, IMINJAN A, HALIK A. A new revised scheme for SPH[J].International Journal of Computational Methods,2018, 15(5): 1-17.
|
[8]IMIN R, WEI Y, IMINJAN A. New corrective scheme for DF-SPH[J].Computational Particle Mechanics,2020,7(3): 471-478.
|
[9]HUANG C, LONG T, LI S M, et al. A kernel gradient-free SPH method with iterative particle shifting technology for modeling low-Reynolds flows around airfoils[J].Engineering Analysis With Boundary Elements,2019,106: 571-587.
|
[10]GAROOSI F, SHAKIBAEINIA A. Numerical simulation of free-surface flow and convection heat transfer using a modified weakly compressible smoothed particle hydrodynamics (WCSPH) method[J].International Journal of Mechanical Sciences,2020,188: 105940.
|
[11]HUANG C, LEI J M, LIU M B, et al. An improved KGF-SPH with a novel discrete scheme of Laplacian operator for viscous incompressible fluid flows[J].International Journal for Numerical Methods in Fluids,2016,81(6): 377-396.
|
[12]王建玲, 李小纲, 汪文帅. 一个改进的三阶WENO-Z型格式[J]. 应用数学和力学, 2021,42(4): 394-404.(WANG Jianling, LI Xiaogang, WANG Wenshuai. An improved 3rd-order WENO-Z type scheme[J].Applied Mathematics and Mechanics,2021,42(4): 394-404.(in Chinese))
|
[13]张成治, 郑素佩, 陈雪, 等. 求解理想磁流体方程的四阶WENO型熵稳定格式[J]. 应用数学和力学, 2023,44(11): 1398-1412.(ZHANG Chengzhi, ZHENG Supei, CHEN Xue, et al. A 4th-order WENO-type entropy stable scheme for ideal magnetohydrodynamic equations[J].Applied Mathematics and Mechanics,2023,44(11): 1398-1412.(in Chinese))
|
[14]MONAGHAN J J, GINGOLD R A. Shock simulation by the particle method SPH[J].Journal of Computational Physics,1983,52(2): 374-389.
|
[15]LI M K, ZHANG A M, PENG Y X, et al. An improved model for compressible multiphase flows based on smoothed particle hydrodynamics with enhanced particle regeneration technique[J].Journal of Computational Physics,2022,458: 111106.
|
[16]MENG Z F, ZHANG A M, WANG P P, et al. A shock-capturing scheme with a novel limiter for compressible flows solved by smoothed particle hydrodynamics[J].Computer Methods in Applied Mechanics and Engineering,2021,386: 114082.
|
[17]WANG P P, ZHANG A M, MENG Z F, et al. A new type of WENO scheme in SPH for compressible flows with discontinuities[J].Computer Methods in Applied Mechanics and Engineering,2021,381: 113770.
|
[18]SIROTKIN F V, YOH J J. A smoothed particle hydrodynamics method with approximate Riemann solvers for simulation of strong explosions[J].Computers & Fluids,2013,88: 418-429.
|
[19]徐建于, 黄生洪. 圆柱形汇聚激波诱导Richtmyer-Meshkov不稳定的SPH模拟[J]. 力学学报, 2019,51(4): 998-1011.(XU Jianyu, HUANG Shenghong. Numerical simulation of cylindrical converging shock induced Richtmyer-Meshkov instability with SPH[J].Chinese Journal of Theoretical and Applied Mechanics,2019,51(4): 998-1011.(in Chinese))
|
[20]FULK D A, QUINN D W. An analysis of 1-D smoothed particle hydrodynamics kernels[J].Journal of Computational Physics,1996,126(1): 165-180.
|
[21]LIU G R, LIU M B.Smoothed Particle Hydrodynamics: a Meshfree Particle Method[M]. Singapore: World Scientific Publishing, 2003.
|
[22]SIGALOTTI L D G, LPEZ H, TRUJILLO L. An adaptive SPH method for strong shocks[J].Journal of Computational Physics,2009,228(16): 5888-5907.
|
[23]DANAILA I, JOLY P, KABER S M, POSTEL M.An Introduction to Scientific Computing[M]. New York: Springer-Verlag, 2007.
|
[24]SOD G A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J].Journal of Computational Physics,1978,27(1): 1-31.
|
[25]MONAGHAN J. SPH and Riemann solvers[J].Journal of Computational Physics,1997,136(2): 298-307.
|
[26]WOODWARD P, COLELLA P. The numerical simulation of two-dimensional fluid flow with strong shocks[J].Journal of Computational Physics,1984,54(1): 115-173.
|
[27]TORO E F.Riemann Solvers and Numerical Methods for Fluid Dynamics[M]. Berlin: Springer-Verlag, 2009.
|