Study on the Responses and Damping Performances of Series-Parallel- Ⅱ Inerter Systems'Dissipation Damping Structures
-
摘要: 针对多自由度混联Ⅱ型惯容对结构减震效果和可靠度的影响较为复杂的问题,运用功率谱二次分解法对该耗能结构的动力响应进行了研究. 通过复模态法将重构后的运动方程进行解耦,获得了结构位移及速度、结构层间位移及速度、层间剪力、层间位移角和惯容力等响应的频域统一解表达式. 运用功率谱二次分解法,获得了上述响应量的功率谱及谱矩的解析解. 以一栋16层的实际结构为例,验证了功率谱及谱矩的正确性. 最后,基于位移标准差和谱矩解析解探究了惯容系统参数对减震效果的影响,并对动力可靠度进行了分析. 验证了布置混联Ⅱ型惯容耗能结构具有良好的减震效果及可靠度.
-
关键词:
- 混联Ⅱ型惯容系统 /
- 随机地震响应 /
- 复模态法 /
- 0~2阶谱矩 /
- Clough-Penzien谱
Abstract: Aimed at the complexity of the effects of the multi-degree-of-freedom series-parallel-Ⅱ inerter system (SPIS-Ⅱ) on the damping and reliability of structures, the dynamic responses of the energy dissipation structure were studied with the power spectrum quadratic decomposition method. The reconstructed equations of motion were decoupled with the complex modal method to obtain unified solution expressions in the frequency domain for the responses of structural displacements and velocities, structural inter-storey displacements and inter-storey velocities, inter-storey shear forces and inter-storey displacement angles. The analytical solutions of power spectrums and spectral moments of the above responses were obtained with the quadratic decomposition method for the power spectrum. With a 16-storey actual structure as an example, the correctness of the power spectrums and spectral moments was verified. Finally, based on the displacement standard deviation and the analytical solution of the spectral moments, the effects of the inertial system parameters on the structural damping were explored, and the dynamic reliability was analyzed. The results show that, the proposed SPIS-Ⅱ structure has good vibration damping effect and reliability. -
表 1 结构动力可靠度
Table 1. Structural dynamic reliability
floor zero-order spectral moment /(10-5·m2) 1st-order spectral moment /(10-5·m2·s-1) 2nd-order spectral moment /(10-4·m2·s-2) structural dynamic reliability 1 1.289 89 5.307 92 4.336 70 0.999 999 99 2 2.172 01 8.082 16 5.464 36 0.996 745 34 3 1.977 02 6.554 71 3.715 54 0.998 281 83 4 4.350 01 13.256 9 6.515 65 0.987 597 19 5 4.033 20 11.933 6 5.538 19 0.993 317 28 6 3.701 03 10.880 3 4.980 16 0.996 953 28 7 3.370 76 10.083 5 4.686 89 0.998 896 34 8 3.046 64 9.470 34 4.537 06 0.999 720 98 9 2.725 98 8.953 31 4.437 67 0.999 960 07 10 2.404 80 8.480 55 4.360 38 0.999 997 70 11 2.079 13 8.043 30 4.366 77 0.999 999 97 12 1.740 31 7.594 79 4.531 23 0.999 999 99 13 1.370 18 6.907 11 4.716 54 1 14 0.952 46 5.567 50 4.399 76 1 15 0.510 79 3.386 29 3.026 79 1 16 0.145 52 1.048 24 1.014 54 1 -
[1] 张瑞甫, 吴明瑞, 周方圆, 等. 利用惯容隔震系统的结构层间隔震研究[J]. 世界地震工程, 2020, 36 (4): 8-16. doi: 10.3969/j.issn.1007-6069.2020.04.002ZHANG Ruifu, WU Mingrui, ZHOU Fangyuan, et al. Research on mid-story isolation of structure using inerter isolation system[J]. World Earthquake Engineering, 2020, 36 (4): 8-16. (in Chinese) doi: 10.3969/j.issn.1007-6069.2020.04.002 [2] 隋䶮, 伍振平, 申泽波, 等. 粘滞阻尼耗能连梁的超高层结构减震性能研究[J]. 世界地震工程, 2021, 37 (1): 66-77.SUI Yan, WU Zhenping, SHEN Zebo, et al. Research on seismic performance of super high rise structure with viscous damping energy dissipation coupling beam[J]. World Earthquake Engineering, 2021, 37 (1): 66-77. (in Chinese) [3] 潘超, 张瑞甫, 王超, 等. 单自由度混联Ⅱ型惯容减震体系的随机地震响应与参数设计[J]. 工程力学, 2019, 36 (1): 129-137.PAN Chao, ZHANG Ruifu, WANG Chao, et al. Stochastic seismic response and design of structural system with series-parallel-Ⅱ inerter system[J]. Engineering Mechanics, 2019, 36 (1): 129-137. (in Chinese) [4] SMITH M C. Synthesis of mechanical networks: theinerter[J]. IEEE Transactions on Automatic Control, 2002, 47 (10): 1648-1662. doi: 10.1109/TAC.2002.803532 [5] IKAGO K, SUGIMURA Y, SAITO K, et al. Modal response characteristics of a multiple-degree-of-freedom structure incorporated with tuned viscous mass dampers[J]. Journal of Asian Architecture and Building Engineering, 2012, 11 (2): 375-382. doi: 10.3130/jaabe.11.375 [6] 翁锦华. 惯容装置限位的层间隔震结构减震性能研究[J]. 应用基础与工程科学学报, 2022, 30 (5): 1188-1200.WENG Jinhua. Study on seismic performance of story isolation structure with inerter device[J]. Journal of Basic Science and Engineering, 2022, 30 (5): 1188-1200. (in Chinese) [7] ARAKAKI T, KURODA H, ARIMA F, et al. Development of seismic devices applied to ball screw, part 2: performance test and evaluation of RD-series[J]. AIJ Journal of Technology and Design, 1999, 5 (9): 265-270. doi: 10.3130/aijt.5.265 [8] 张瑞甫, 曹嫣如, 潘超. 惯容减震(振)系统及其研究进展[J]. 工程力学, 2019, 36 (10): 8-27.ZHANG Ruifu, CAO Yanru, PAN Chao. Inerter system and its state-of-the-art[J]. Engineering Mechanics, 2019, 36 (10): 8-27. (in Chinese) [9] 黄绪宏, 许维炳, 王瑾, 等. 考虑惯容的多颗粒阻尼器等效力学模型及试验验证[J]. 振动与冲击, 2021, 40 (18): 102-111.HUANG Xuhong, XU Weibing, WANG Jin, et al. Equivalent model and experimental verification of a multi-particle damper with inerter[J]. Journal of Vibration and Shock, 2021, 40 (18): 102-111. (in Chinese) [10] 李创第, 江丽富, 王瑞勃, 等. 单自由度混联Ⅱ型惯容系统随机地震动响应分析[J]. 应用数学和力学, 2023, 44 (3): 260-271.LI Chuangdi, JIANG Lifu, WANG Ruibo, et al. Responses of SDOF structures with SPIS-Ⅱ dampers under random seismic excitation[J]. Applied Mathematics and Mechanics, 2023, 44 (3): 260-271. (in Chinese) [11] ZHANG R, ZHAO Z, PAN C, et al. Damping enhancement principle ofinerter system[J]. Structural Control and Health Monitoring, 2020, 27 (5): e2523. [12] 潘超, 刘媛, 张瑞甫, 等. 惯容减震系统性能成本控制解析设计方法[J]. 建筑结构学报, 2022, 43 (11): 107-116.PAN Chao, LIU Yuan, ZHANG Ruifu, et al. Performance-cost design method of inerter system based on closed-form formulae[J]. Journal of Building Structures, 2022, 43 (11): 107-116. (in Chinese) [13] KANAI K. An empirical formula for the spectrum of strong earthquake motions[J]. Bulletin of Earthquake Research Institute, University of Tokyo, 1961, 39 (1): 86-95. [14] 邹万杰, 姜琰, 张梦丹, 等. 基于Kanai-Tajimi谱六参数黏弹性耗能结构地震响应的简明封闭解[J]. 振动与冲击, 2022, 41 (6): 130-138.ZOU Wanjie, JIANG Yan, ZHANG Mengdan, et al. Concise and closed solution of the seismic responses of viscoelastic energy dissipation structures under Kanai-Tajimi spectrum excitation[J]. Vibration and Shock, 2022, 41 (6): 130-138. (in Chinese) [15] HOUSNER G W. Characteristics of strong-motion earthquakes[J]. Bulletin of the Seismological Society of America, 1947, 37 (1): 19-31. [16] 李创第, 陈明杰, 葛新广. 基于Clough-Penzien谱激励的指数型非黏滞阻尼结构随机地震动响应简明封闭解[J]. 应用数学和力学, 2021, 42 (3): 282-291.LI Chuangdi, CHEN Mingjie, GE Xinguang. A simple closed response solution to random ground motion for exponential non-viscous-damping structures based on the Clough-penzien spectrum excitation[J]. Applied Mathematics and Mechanics, 2021, 42 (3): 282-291. (in Chinese) [17] 邹万杰, 刘美华, 李创第. 基于胡聿贤谱的带支撑广义Maxwell阻尼隔震结构随机响应分析[J]. 力学学报, 2022, 54 (9): 2601-2615.ZOU Wanjie, LIU Meihua, LI Chuangdi. Seismic response analysis of generalized Maxwell damping isolated structure with braces under HU Yuxian spectrum excitatiom[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54 (9): 2601-2615. (in Chinese) [18] TOOTKABONI M, GRAHAM-BRADY L. Stochastic direct integration schemes for dynamic systems subjected to random excitations[J]. Probabilistic Engineering Mechanics, 2010, 25 (2): 163-171. [19] XU J, SPENCERJ B F, LU X L, et al. Optimization of structures subject to stochastic dynamic loading[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32 (8): 657-673. [20] SU C, XIAN J H. Nonstationary random vibration analysis of fractionally-damped systems by numerical explicit time-domain method[J]. Probabilistic Engineering Mechanics, 2022, 68 : 103228. [21] 葛新广, 龚景海, 李创第, 等. 功率谱二次正交化法在随机地震动响应的应用[J]. 振动工程学报, 2022, 35 (3): 616-624.GE Xinguang, GONG Jinghai, LI Chuangdi, et al. Application of quadratic orthogonalization method of response power spectrum to random ground motion response[J]. Journal of Vibration Engineering, 2022, 35 (3): 616-624. (in Chinese) [22] 林家浩, 张亚辉, 赵岩. 虚拟激励法在国内外工程界的应用回顾与展望[J]. 应用数学和力学, 2017, 38 (1): 1-32.LIN Jiahao, ZHANG Yahui, ZHAO Yan. The pseudo-excitation method and its industrial applications in China and abroad[J]. Applied Mathematics and Mechanics, 2017, 38 (1): 1-32. (in Chinese) [23] 林家浩, 张亚辉. 随机振动的虚拟激励法[M]. 北京: 科学出版社, 2004.LIN Jiahao, ZHANG Yahui. Excitation Method for Random Vibration[M]. Beijing: Science Press, 2004. (in Chinese) [24] 葛新广, 张梦丹, 龚景海, 等. 频响函数二次正交法在Davenport风速谱下结构系列响应简明封闭解的应用研究[J]. 振动与冲击, 2021, 40 (21): 207-214.GE Xinguang, ZHANG Mengdan, GONG Jinghai, et al. Application of FRF quadratic orthogonal method in getting concise closed form solutions of structural series responses under Davenport wind speed spectrum[J]. Journal of Vibration and Shock, 2021, 40 (21): 207-214. (in Chinese) [25] GE X G, GONG J H, ZHAO C J, et al. Structural dynamic responses of building structures with non-viscous dampers under Kanai-Tajimi spectrum excitation[J]. Journal of Sound and Vibration, 2022, 517 : 116556. [26] 徐怀兵, 欧进萍. 设置混合调谐质量阻尼器的高层建筑风振控制实用设计方法[J]. 建筑结构学报, 2017, 38 (6): 144-154.XU Huaibing, OU Jinping. Design method for wind-induced vibration control of high-rise buildings with hybrid tuned mass dampers[J]. Journal of Building Structures, 2017, 38 (6): 144-154. (in Chinese) [27] 彭勇波, 孙培芳. 随机地震动作用下结构-TMDI系统参数设计与概率密度演化分析[J]. 土木工程学报, 2023, 12 (56): 8-20.PENG Yongbo, SUN Peifang. Parameter desing and probability density evolution analysis of structure-TMDI system subjected to stochastic earthquake ground motions[J]. China Civil Engineering Journal, 2023, 12 (56): 8-20. (in Chinese) [28] 欧进萍, 段宇博. 高层建筑结构的抗震可靠度分析与优化设计[J]. 地震工程与工程振动, 1995, 15 (1): 1-13.OU Jinping, DUAN Yubo. Seismic reliability analysis and optimum design of tall buildings[J]. Earthquake Engineering and Engineering Vibration, 1995, 15 (1): 1-13. (in Chinese) -