留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

剪切稀化流变特性对微通道中颗粒迁移的影响

沈洋 王企鲲 刘唐京

沈洋, 王企鲲, 刘唐京. 剪切稀化流变特性对微通道中颗粒迁移的影响[J]. 应用数学和力学, 2024, 45(5): 637-650. doi: 10.21656/1000-0887.440326
引用本文: 沈洋, 王企鲲, 刘唐京. 剪切稀化流变特性对微通道中颗粒迁移的影响[J]. 应用数学和力学, 2024, 45(5): 637-650. doi: 10.21656/1000-0887.440326
SHEN Yang, WANG Qikun, LIU Tangjing. Effect of Shear Thinning Rheological Properties on Particle Migration in Microchannels[J]. Applied Mathematics and Mechanics, 2024, 45(5): 637-650. doi: 10.21656/1000-0887.440326
Citation: SHEN Yang, WANG Qikun, LIU Tangjing. Effect of Shear Thinning Rheological Properties on Particle Migration in Microchannels[J]. Applied Mathematics and Mechanics, 2024, 45(5): 637-650. doi: 10.21656/1000-0887.440326

剪切稀化流变特性对微通道中颗粒迁移的影响

doi: 10.21656/1000-0887.440326
详细信息
    作者简介:

    沈洋(1999—),男,硕士生(E-mail: 1025565890@qq.com)

    通讯作者:

    王企鲲(1978—),男,副教授,博士(通讯作者. E-mail: wangqk@usst.edu.cn)

  • 中图分类号: O359

Effect of Shear Thinning Rheological Properties on Particle Migration in Microchannels

  • 摘要: 该文采用“相对运动模型”对剪切稀化流体中的颗粒聚集现象进行了数值模拟,为了解剪切稀化效应在微流体中对颗粒力学特性的影响,对黏弹性流体和非黏弹性流体进行了剪切稀化的匹配.研究结果表明,剪切稀化特性可以明显改变颗粒的力学特性.在非黏弹性流体中,剪切稀化能导致颗粒的聚集位置向壁面移动,并且对颗粒的聚集速度具有激励作用;在黏弹性流体中,剪切稀化效应的发生会伴随着流体弹性的降低,从而导致颗粒由中心聚集转而向壁面聚集.另外,该文还观察到低剪切稀化且高弹性情况下颗粒惯性升力指向通道中心的现象.
  • 图  1  计算模型示意图

    Figure  1.  Schematic diagram of the calculation model

    图  2  Carreau流体与Giesekus流体剪切稀化特性拟合情况

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  Fitting of shear thinning characteristics between the Carreau fluid and the Giesekus fluid

    图  3  网格示意图

    Figure  3.  Grid diagram

    图  4  网格无关性验证

    Figure  4.  Grid independence verification

    图  5  颗粒的升力结果对比

    Figure  5.  Comparison of particle lift results

    图  6  对应工况Carreau流体中颗粒移动速度

    Figure  6.  Particle movement velocities in the Carreau fluid under corresponding working conditions

    图  7  对应工况Carreau流体中颗粒惯性升力分布情况

    Figure  7.  Distributions of particle inertia lifts in the Carreau fluid under corresponding working conditions

    图  8  对应工况Carreau流体中颗粒升力分布情况

    Figure  8.  Distributions of particle lifts in the Carreau fluid under corresponding working conditions

    图  9  Carreau流体与不同Re数下Newton流体中颗粒升力的分布情况对比

    Figure  9.  Comparison of particle lift distributions in the Carreau fluid and the Newtonian fluid at different Re numbers

    图  10  Giesekus流体中,颗粒升力分布变化情况

    Figure  10.  Changes in particle lift distributions in the Giesekus fluid

    图  11  改变Giesekus流体剪切稀化对颗粒弹性升力分布的影响

    Figure  11.  The effects of changing the shear thinning of the Giesekus fluid on the elastic lift distributions of particles

    图  12  改变Giesekus流体剪切稀化对颗粒惯性升力分布的影响

    Figure  12.  The effects of changing the shear thinning of the Giesekus fluid on the distributions of particle inertia lifts

    图  13  r+=0.1时,x=0截面的第一法向应力差系数云图及速度矢量图

    Figure  13.  The contours with velocity vectors of the first normal stress difference coefficient of the x=0 section at r+=0.1

    图  14  r+=0.3时,x=0截面的第一法向应力差系数云图及速度矢量图

    Figure  14.  The contours with velocity vectors of the first normal stress difference coefficient of the x=0 section r+=0.3

    图  15  r+=0.6时,x=0截面的第一法向应力差系数云图及速度矢量图

    Figure  15.  The contours with velocity vectors of the first normal stress difference coefficient of the x=0 section at r+=0.6

    图  16  不同工况下,圆管内颗粒附近压力云图

    Figure  16.  Pressure contours near particles in a circular tube under different working conditions

  • [1] STOLPE A, PANTEL K, SLEIJFER S, et al. Circulating tumor cell isolation and diagnostics: toward routine clinical use[J]. Cancer Research, 2011, 71(18): 5955-5960. doi: 10.1158/0008-5472.CAN-11-1254
    [2] GASCOYNE P, SATAYAVIVAD J, RUCHIRAWAT M. Microfluidic approaches to malaria detection[J]. Acta Tropica, 2004, 89(3): 357-369. doi: 10.1016/j.actatropica.2003.11.009
    [3] GOSSETT D R, WEAVER W M, MACH A J, et al. Label-free cell separation and sorting in microfluidic systems[J]. Analytical and Bioanalytical Chemistry, 2010, 397(8): 3249-3267. doi: 10.1007/s00216-010-3721-9
    [4] SETHU P, SIN A, TONER M. Microfluidic diffusive filter for apheresis (leukapheresis)[J]. Lab Chip, 2006, 6(1): 83-89. doi: 10.1039/B512049G
    [5] ZHOU J, PAPAUTSKY I. Viscoelastic microfluidics: progress and challenges[J]. Microsystems & Nanoengineering, 2020, 6(1): 113.
    [6] SALAFI T, ZEMING K K, ZHANG Y. Advancements in microfluidics for nanoparticle separation[J]. Lab on a Chip, 2017, 17(1): 11-33. doi: 10.1039/C6LC01045H
    [7] 蔡伟华, 李小斌, 张红娜, 等. 黏弹性流体动力学[M]. 北京: 科学出版社, 2016.

    CAI Weihua, LI Xiaobin, ZHANG Hongna, et al. Viscoelastic Fluid Dynamics[M]. Beijing: Science Press, 2016. (in Chinese)
    [8] LI D, XUAN X. The motion of rigid particles in the Poiseuille flow of pseudoplastic fluids through straight rectangular microchannels[J]. Microfluidics and Nanofluidics, 2019, 23(54): 1-11.
    [9] 马小晶, 周鑫, 吐松江·卡日, 等. 乙醇液滴撞击高温壁面蒸发过程的模拟预测研究[J]. 应用数学和力学, 2023, 44(5): 535-542. doi: 10.21656/1000-0887.430139

    MA Xiaojing, ZHOU Xin, TUSONGJIANG Kari, et al. Simulation and prediction of the evaporation process of ethanol droplets impacting high temperature wall[J]. Applied Mathematics and Mechanics, 2023, 44(5): 535-542. (in Chinese) doi: 10.21656/1000-0887.430139
    [10] 朱帅润, 李绍红, 钟彩尹, 等. 时间分数阶的非饱和渗流数值分析及其应用[J]. 应用数学和力学, 2022, 43(9): 966-975. doi: 10.21656/1000-0887.420334

    ZHU Shuairun, LI Shaohong, ZHONG Caiyin, et al. Numerical analysis of time fractional-order unsaturated flow and its application[J]. Applied Mathematics and Mechanics, 2022, 43(9): 966-975. (in Chinese) doi: 10.21656/1000-0887.420334
    [11] HU X, LIN J, GUO Y, et al. Motion and equilibrium position of elliptical and rectangular particles in a channel flow of a power-law fluid[J]. Powder Technology, 2021, 377: 585-596. doi: 10.1016/j.powtec.2020.09.028
    [12] HU X, LIN J, LIN P, et al. Rigid spheroid migration in square channel flow of power-law fluids[J]. International Journal of Mechanical Sciences, 2023, 247: 108194. doi: 10.1016/j.ijmecsci.2023.108194
    [13] 王企鲲. 微通道中颗粒所受惯性升力特性的数值研究[J]. 机械工程学报, 2014, 50(2): 165-170. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201514023.htm

    WANG Qikun. Numerical investigation on mechanism for inertial lift on particles in micro-channel[J]. Journal of Mechanical Engineering, 2014, 50(2): 165-170. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201514023.htm
    [14] 刘唐京, 王企鲲, 邹赫. 高Re数层流管道中颗粒聚集特性的数值研究[J]. 应用数学和力学, 2023, 44(1): 70-79. doi: 10.21656/1000-0887.430075

    LIU Tangjing, WANG Qikun, ZOU He. Numerical investigation of particle focusing patterns in laminar pipe flow with high Reynolds numbers[J]. Applied Mathematics and Mechanics, 2023, 44(1): 70-79. (in Chinese) doi: 10.21656/1000-0887.430075
    [15] JALALI A, DELOUEI A A, KHORASHADIZADEH M, et al. Mesoscopic simulation of forced convective heat transfer of Carreau-Yasuda fluid flow over an inclined square: temperature-dependent viscosity[J]. Journal of Applied and Computational Mechanics, 2020, 6(2): 307-319.
    [16] XIE C Y, ZHANG J, BERTOLA V, et al. Lattice Boltzmann modeling for multiphase viscoplastic fluid flow[J]. Journal of Non-Newton Fluid Mechanics, 2016, 234: 118-128.
    [17] SURESHKUMAR R, BERIS A N. Effect of artificial stress diffusivity on the stability of numerical calculations and the flow dynamics of time-dependent viscoelastic flows[J]. Journal of Non-Newton Fluid Mechanics, 1995, 60(1): 53-80.
    [18] STEWART P A, LAY N, SUSSMAN M, et al. An improved sharp interface method for viscoelastic and viscous two-phase flows[J]. Journal of Scientific Computing, 2008, 35(1): 43-61.
    [19] 郑智颖. FLUENT在粘弹性流体流动数值模拟中的应用[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    ZHENG Zhiying. Application of FLUENT software in numerical simulation for viscoelastic fluid flow[D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese)
    [20] TAMANO S, ITOH M, HOTTA S, et al. Effect of rheological properties on drag reduction in turbulent boundary layer flow[J]. Physics of Fluids, 2009, 21(5): 055101.
    [21] RAFFIEE A H, ARDEKANI A M, DABIRI S. Numerical investigation of elasto-inertial particle focusing patterns in viscoelastic microfluidic devices[J]. Journal of Non-Newton Fluid Mechanics, 2019, 272: 104166.
    [22] 王企鲲, 孙仁. 方形截面微通道中颗粒"惯性聚集"特性的数值研究[C]//第七届全国流体力学学术会议. 2012.

    WANG Qikun, SUN Ren. Numerical study on the inertial aggregation characteristics of particles in square cross section microchannels[C]//The 7th National Conference on Fluid Mechanics. 2012. (in Chinese)
    [23] HU X, LIN J, CHEN D, et al. Influence of non-Newtonian power law rheology on inertial migration of particles in channel flow[J]. Biomicrofluidics, 2020, 14(1): 0140105.
    [24] LI G, MCKINLEY G H, ARDEKANI A M. Dynamics of particle migration in channel flow of viscoelastic fluids[J]. Journal of Fluid Mechanics, 2015, 785: 486-505.
  • 加载中
图(16)
计量
  • 文章访问数:  232
  • HTML全文浏览量:  86
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-01
  • 修回日期:  2024-01-03
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回