留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NACA0021和NACA4822翼型肋通道中环境空气流动传热特性的实验研究

李勇 张迎春 付虞 周棋润 赵雨菲 杨森杰 马素霞

李勇, 张迎春, 付虞, 周棋润, 赵雨菲, 杨森杰, 马素霞. NACA0021和NACA4822翼型肋通道中环境空气流动传热特性的实验研究[J]. 应用数学和力学, 2024, 45(5): 594-605. doi: 10.21656/1000-0887.440331
引用本文: 李勇, 张迎春, 付虞, 周棋润, 赵雨菲, 杨森杰, 马素霞. NACA0021和NACA4822翼型肋通道中环境空气流动传热特性的实验研究[J]. 应用数学和力学, 2024, 45(5): 594-605. doi: 10.21656/1000-0887.440331
LI Yong, ZHANG Yingchun, FU Yu, ZHOU Qirun, ZHAO Yufei, YANG Senjie, MA Suxia. Experimental Study on Flow and Heat Transfer Characteristics of Ambient Air in NACA0021 and NACA4822 Airfoil-Fin Channels[J]. Applied Mathematics and Mechanics, 2024, 45(5): 594-605. doi: 10.21656/1000-0887.440331
Citation: LI Yong, ZHANG Yingchun, FU Yu, ZHOU Qirun, ZHAO Yufei, YANG Senjie, MA Suxia. Experimental Study on Flow and Heat Transfer Characteristics of Ambient Air in NACA0021 and NACA4822 Airfoil-Fin Channels[J]. Applied Mathematics and Mechanics, 2024, 45(5): 594-605. doi: 10.21656/1000-0887.440331

NACA0021和NACA4822翼型肋通道中环境空气流动传热特性的实验研究

doi: 10.21656/1000-0887.440331
(我刊青年编委李勇来稿)
基金项目: 

山西省基础研究计划青年基金 202203021212263

中国博士后科学基金(面上项目) 2023M732569

山西省回国留学人员科研资助项目 2023-055

山西省回国留学人员科研资助项目 2023-143

教育部“春晖计划”合作科研项目 202200075

详细信息
    通讯作者:

    李勇(1987—),男,讲师,博士(通讯作者. E-mail: yongli@tyut.edu.cn)

  • 中图分类号: O35;V19

Experimental Study on Flow and Heat Transfer Characteristics of Ambient Air in NACA0021 and NACA4822 Airfoil-Fin Channels

(Contributed by LI Yong, M. AMM Youth Editorial Board)
  • 摘要: 针对超燃冲压发动机在更高Mach数飞行时,主动再生冷却技术面临换热能力不足的瓶颈问题,拟利用翼型肋加强再生冷却通道的传热性能.为了从原理上验证翼型肋通道的强化传热效果,搭建了环境空气在NACA0021对称翼型肋和NACA4822非对称翼型肋通道(横截面尺寸50 mm × 50 mm)中的流动传热实验测试平台,基于稳态液晶技术得到受热表面的Nusselt数.通过实验研究发现:NACA0021对称翼型肋通道和NACA4822非对称翼型肋通道的传热强度分别被提升了0.17%~17.1%和18.4%~52.1%,50 m3/h流量下的PEC(performance evaluation criterion)分别为1.04和1.24;大流量条件下,NACA4822非对称翼型肋通道可强化中间受热面的传热性能;翼型肋通道中的流动压降也会相应增大,其中NACA4822翼型肋通道中的压降最大,翼型肋的非对称性使得流动湍流强度不断积累造成下游压降存在明显升高.该研究将有助于进一步开展翼型肋通道内超临界流体的流动传热特性研究,拓宽超燃冲压发动机主动再生冷却技术的应用温区.
    1)  (我刊青年编委李勇来稿)
  • 图  1  超燃冲压发动机再生冷却原理图

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  Schematic diagram of regenerative cooling of the scramjet engine

    图  2  超临界(压力)正癸烷的热物性参数

    Figure  2.  Thermal properties of supercritical (pressure) n-decane

    图  3  单壁面受热矩形通道内超临界(压力)碳氢燃料传热恶化现象

    Figure  3.  Heat transfer deterioration of supercritical (pressure) hydrocarbon fuel in a rectangular channel heated on a single wall

    图  4  翼型肋通道中,环境空气流动传热实验测试平台

    Figure  4.  The experimental test platform for flow and heat transfer of ambient air in an airfoil-fin channel

    图  5  翼型肋排布方式(单位: mm)

    Figure  5.  The arrangement of the airfoil-fin (unit: mm)

    图  6  液晶标定示意图

    Figure  6.  The liquid crystal calibration diagram

    图  7  液晶色随温度变化图

    Figure  7.  The color change of liquid crystal with the temperature

    图  8  翼型肋结构图

    Figure  8.  Structure diagram of the airfoil-fin

    图  9  NACA0021翼型肋通道和光滑通道受热表面的Nusselt数分布

    Figure  9.  Nusselt number distributions on heated surfaces of the NACA0021 airfoil-fin channel and the smooth channel

    图  10  NACA4822翼型肋通道和光滑通道受热表面的Nusselt数分布

    Figure  10.  Nusselt number distributions on heated surfaces of the NACA4822 airfoil-fin channel and the smooth channel

    图  11  无翼型肋、NACA0021翼型肋和NACA4822翼型肋通道中受热表面沿程平均Nusselt数分布

    Figure  11.  Average Nusselt number distributions along the heated surface in the smooth channel the NACA0021 airfoil-fin and the NACA4822 airfoil-fin

    图  12  无翼型肋、NACA0021翼型肋和NACA4822翼型肋通道中沿程压降

    Figure  12.  Pressure drops along the smooth channel, the NACA0021 airfoil-fin and the NACA4822 airfoil-fin

    图  13  NACA0021翼型肋和NACA4822翼型肋通道中传热-压降综合性能分析

    Figure  13.  Comprehensive performance analysis of heat transfer and pressure drop in the NACA0021 airfoil-fin and the NACA4822 airfoil-fin channels

    表  1  实验仪器详细信息

    Table  1.   Details of laboratory instruments

    experimental apparatus manufacturer product model measuring range measuring error
    measuring apparatus CCD camera Allied Vision (Germany) Prosilica GE 1650C 4 096×22 160 pixels -
    float flowmeter KROHNE (Germany) VA20R 0~210 N·m3/h 2%
    micromanometer Furness Controls (UK) FC014 0~10 000 Pa 1%
    thermometer Steinfurth (Germany) DTM Spezial 15~61 ℃ 0.01 ℃
    test instrument centrifugal fan Siemens (Germany) ELMO-G 2BH3 110-0HC42-5 1.10 kW/50 Hz -
    thermalized foil - PI108920-00 24 V/60 W -
    liquid crystal membrane LCR Hallcrest Ltd. (UK) R35C5W - 0.1 K
    DC power EVENTEK (France) KPS305D 0~32 V/0~6 A -
    下载: 导出CSV
  • [1] BONIFACIO S, BORRECA S, RANUZZI G, et al. SPREAD: a scramjet preliminary aerothermodynamic design code[C]//Proceedings of 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Canberra, Australia, 2006: AIAA 2006-7910.
    [2] YU J, SONG Q F, MA X L, et al. Study of heat transfer of composite lattice structure for active cooling used in the scramjet combustor[J]. Materials Research Innovations, 2015, 19(S5): 843-849.
    [3] 鲍文, 周伟星, 周有新, 等. 超燃冲压发动机再生冷却结构的强化换热优化研究[J]. 宇航学报, 2008, 29(1): 246-251. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200801044.htm

    BAO Wen, ZHOU Weixing, ZHOU Youxin, et al. Active cooling design on heat transfer enhancement for scramjet engines using optimization methods[J]. Journal of Astronautics, 2008, 29(1): 246-251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200801044.htm
    [4] BAIJU A P, JAYAN N, NAGESWARAN G, et al. A technology for improving regenerative cooling in advanced cryogenic rocket engines for space transportation[J]. Advances in Astronautics Science and Technology, 2021, 4: 11-18. doi: 10.1007/s42423-020-00071-0
    [5] LI L H, LI X, QIN J, et al. Effect of dimple depth-diameter ratio on the flow and heat transfer characteristics of supercritical hydrocarbon fuel in regenerative cooling channel[J]. International Journal of Aerospace Engineering, 2021, 2021: 7694510.
    [6] LI X, ZHANG S L, ZUO J Y, et al. Flow and heat transfer characteristics of supercritical hydrogen in unilateral heated channels with micro-ribs[J]. Applied Thermal Engineering, 2023, 221: 119900. doi: 10.1016/j.applthermaleng.2022.119900
    [7] HUANG D, LI W, CHEN J X, et al. Heat transfer characteristics of aviation kerosene flowing in enhanced tubes at supercritical pressure[J]. ASME Journal of Thermal Science and Engineering Applications, 2020, 12(3): 031013.
    [8] XU K K, TANG L J, MENG H. Numerical study of supercritical-pressurefluid flows and heat transfer of methane in ribbed cooling tubes[J]. International Journal of Heat and Mass Transfer, 2015, 84: 346-358. doi: 10.1016/j.ijheatmasstransfer.2015.01.041
    [9] 张冠文. 翼型结构在紧凑型换热装置中的应用研究[D]. 广州: 广州大学, 2022.

    ZHANG Guanwen. Research on the application of airfoil structure in compact heat exchanger[D]. Guangzhou: Guangzhou University, 2022. (in Chinese)
    [10] 褚雯霄, 李雄辉, 马挺, 等. 不同肋片结构的印刷电路板换热器传热与阻力特性[J]. 科学通报, 2017, 62(16): 1788-1794. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201716013.htm

    CHU Wenxiao, LI Xionghui, MA Ting, et al. Heat transfer and pressure drop performance of printed circuit heat exchanger with different fin structures[J]. Chinese Science Bulletin, 2017, 62(16): 1788-1794. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201716013.htm
    [11] SHRIRAO P N, SAMBHE R U. Enhancement of heat transfer characteristics using aerofoil fin over square and circular fins[J]. International Journal of Recent Technology and Engineering, 2019, 8(3): 827-830.
    [12] CHEN F, ZHANG L S, HUAI X L, et al. Comprehensive performance comparison of airfoil fin PCHEs with NACA 00XX series airfoil[J]. Nuclear Engineering and Design, 2017, 315: 42-50. doi: 10.1016/j.nucengdes.2017.02.014
    [13] CUI X Y, GUO J F, HUAI X L, et al. Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical CO2[J]. International Journal of Heat and Mass Transfer, 2018, 121: 354-366. doi: 10.1016/j.ijheatmasstransfer.2018.01.015
    [14] EDWARDS T. Liquid fuels and propellants for aerospace propulsion: 1903-2003[J]. AIAA Journal of Propulsion and Power, 2003, 19: 1089-1107.
    [15] PIZZARELLI M, URBANO A, NASUTI F. Numerical analysis of deterioration in heat transfer to near-critical rocket propellants[J]. Numerical Heat Transfer (Part A): Applications, 2010, 57: 297-314.
    [16] PEI X Y, HOU L Y, REN Z Y. Flow pattern effects on the oxidation deposition rate of aviation kerosene[J]. Energy and Fuels, 2015, 29: 6088-6094.
    [17] 康玉东, 孙冰. 再生冷却通道跨临界甲烷流动传热研究[J]. 航空动力学报, 2010, 25: 2493-2497. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201011014.htm

    KANG Yudong, SUN Bing. Flow and heat transfer investigation of transcritical methane in regenerative cooling channels[J]. Journal of Aerospace Power, 2010, 25: 2493-2497. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201011014.htm
    [18] WILLARD M, GIEL D, RAFFOUL C N. Scramjet/ramjet design and integration trade studies using SRHEAT[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Denver, Colorado, USA, 2009: 2009-5184.
    [19] LIU J. Investigations of heat transfer and fluid flow in the pocket region of a gas turbine engine and cooling of a turbine blade[D]. Lund: Lund University, 2019.
    [20] COOPER T E, FIELD R J, MEYER J F. Liquid crystal thermography and its application to the study of convective heat transfer[J]. ASME Journal of Heat Transfer, 1975, 97(3): 442-450.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  73
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-06
  • 修回日期:  2024-04-23
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回