留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有正弦波纹的平行板微通道中Jeffrey流体周期电渗流动

长龙 布仁满都拉 孙艳军 菅永军

长龙, 布仁满都拉, 孙艳军, 菅永军. 具有正弦波纹的平行板微通道中Jeffrey流体周期电渗流动[J]. 应用数学和力学, 2024, 45(5): 622-636. doi: 10.21656/1000-0887.440333
引用本文: 长龙, 布仁满都拉, 孙艳军, 菅永军. 具有正弦波纹的平行板微通道中Jeffrey流体周期电渗流动[J]. 应用数学和力学, 2024, 45(5): 622-636. doi: 10.21656/1000-0887.440333
CHANG Long, BUREN Mandula, SUN Yanjun, JIAN Yongjun. Periodic Electroosmotic Flow of the Jeffrey Fluid in Microchannel Between Two Sinusoidally Wavy Walls[J]. Applied Mathematics and Mechanics, 2024, 45(5): 622-636. doi: 10.21656/1000-0887.440333
Citation: CHANG Long, BUREN Mandula, SUN Yanjun, JIAN Yongjun. Periodic Electroosmotic Flow of the Jeffrey Fluid in Microchannel Between Two Sinusoidally Wavy Walls[J]. Applied Mathematics and Mechanics, 2024, 45(5): 622-636. doi: 10.21656/1000-0887.440333

具有正弦波纹的平行板微通道中Jeffrey流体周期电渗流动

doi: 10.21656/1000-0887.440333
基金项目: 

国家自然科学基金 11862018

国家自然科学基金 12162003

国家自然科学基金 12262026

内蒙古自治区高等学校创新团队发展计划 NMGIRT2323

自治区直属高校基本科研业务费 NCYWT23035

内蒙古自治区自然科学基金 2021MS01007

内蒙古自治区自然科学基金 2024LHMS01010

详细信息
    作者简介:

    长龙(1979—),男,副教授,博士(E-mail: suolunga@163.com)

    通讯作者:

    菅永军(1974—),男,教授,博士, 博士生导师(通讯作者. E-mail: jianyj@dhu.edu.cn)

  • 中图分类号: O357.1

Periodic Electroosmotic Flow of the Jeffrey Fluid in Microchannel Between Two Sinusoidally Wavy Walls

  • 摘要: 研究了具有正弦波纹的平行板微通道中Jeffrey流体周期电渗流动(AC EOF).通过摄动展开法, 求解了动量方程,得到了平行板微管道中Jeffrey流体AC EOF速度的近似解析解及其体积流率.在此基础上,研究了相关无量纲参数,如振荡Reynolds数ReΩ、压力梯度G、Deborah数De、滞后时间λ2ω、电动宽度K、正弦波纹的小振幅δ、相位差θ及其波数λ对平均速度um(t)与平均速度的振幅|Um|的影响.结果表明:Newton、Maxwell和Jeffrey流体之间的速度振幅差异是明显的; Jeffrey流体速度分布受壁面波纹的影响显著, 并呈现出明显的波动现象, 同时,速度分布还受上下板波纹相位差θ的影响; 随着ReΩ的增大, AC EOF速度和um(t)呈现出快速振荡且振幅逐渐减小的趋势; De数类似于ReΩ, 使得在外加电场作用下,AC EOF速度更容易产生振荡; 同时, AC EOF速度和|Um|随着λ2ω的增大而减小; 对于给定的ReΩ, 相位滞后χ(代表电场和平均速度之间的相位差)随着θ的变化呈明显增大或减小趋势; 而χ随着G, λ2ωθ的增大而减小, 但是在较大的λ下(如λ > 3.4), χ几乎没有显著变化.
  • 图  1  正弦形波纹微道通间AC EOF示意图

    Figure  1.  Schematic of AC EOF through a microchannel with sinusoidal wavy walls

    图  2  速度振幅|w(0, y)|随y的变化(K=10, λ=8, G=0, ReΩ=10, θ=0.5π)

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  The amplitude of velocity |w(0, y)| with y(K=10, λ=8, G=0, ReΩ=10, θ=0.5π)

    图  3  不同δθ对应的三维AC EOF速度及等高线分布图(K=10, λ=8, ζ=1, δ=0.05, G=0, De=6, ReΩ=5, λ2ω=1)

    Figure  3.  The 3D AC EOF velocity distributions and contours for different δ and θ values (K=10, λ=8, ζ=1, δ=0.05, G=0, De=6, ReΩ=5, λ2ω=1)

    图  4  不同δθ对应的三维AC EOF速度及等高线分布图(K=10, λ=8, ζ=1, G=0, De=6, ReΩ=50, θ=π)

    Figure  4.  The 3D AC EOF velocity distributions and contours for different δ and θ values (K=10, λ=8, ζ=1, G=0, De=6, ReΩ=50, θ=π)

    图  5  平均速度和电场势之间的相位滞后χ对不同的θG随各参数的变化(K=10, ζ=1, De=2, ReΩ=5, λ2ω=0.8, λ=2, δ=0.1)

    Figure  5.  The phase lag χ between the mean velocity and electric field potential with the parameters for different θ and G values (K=10, ζ=1, De=2, ReΩ=5, λ2ω=0.8, λ=2, δ=0.1)

    图  6  平均速度um(t)随t的变化(K=10, λ=2, De=2, ReΩ=5, λ2ω=0.8, ζ=1, δ=0.1, θ=0)

    Figure  6.  Variations of average speed um(t) with t (K=10, λ=2, De=2, ReΩ=5, λ2ω=0.8, ζ=1, δ=0.1, θ=0)

    图  7  平均速度的复振幅|Um|随各参数的变化(K=10, λ=2, ReΩ=5, De=2, λ2ω=0.8, ζ=1, δ=0.1)

    Figure  7.  The complex amplitudes of the average velocity |Um| as a function with the parameters (K=10, λ=2, ReΩ=5, De=2, λ2ω=0.8, ζ=1, δ=0.1)

    图  8  速度振幅|w(0, y)|随y的变化(λ=8, G=0, θ=0.5π, ζ=1)

    Figure  8.  Variations of velocity amplitude |w(0, y)| with y (λ=8, G=0, θ=0.5π, ζ=1)

  • [1] STONE H A, STROOCK A D, AJDARI A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip[J]. Annual Review of Fluid Mechanics, 2004, 36: 381-411. doi: 10.1146/annurev.fluid.36.050802.122124
    [2] BAYRAKTAR T, PIDUGU S B. Characterization of liquid flows in microfluidic systems[J]. International Journal of Heat and Mass Transfer, 2006, 49(5/6): 815-824.
    [3] BANERJEE D, PATI S, BISWAS P. Analytical study of two-layered mixed electro-osmotic and pressure-driven flow and heat transfer in a microchannel with hydrodynamic slippage and asymmetric wall heating[J]. Physics of Fluids, 2022, 34(3): 032013. doi: 10.1063/5.0080107
    [4] JIAN Y, YANG L, LIU Q. Time periodic electro-osmotic flow through a microannulus[J]. Physics of Fluids, 2010, 22(4): 042001. doi: 10.1063/1.3358473
    [5] KANG Y, YANG C, HUANG X. Electroosmotic flow in a capillary annulus with high zeta potentials[J]. Journal of Colloid and Interface Science, 2002, 253(2): 285-294. doi: 10.1006/jcis.2002.8453
    [6] CHANG L, SUN Y, BUREN M, et al. Thermal and flow analysis of fully developed electroosmotic flow in parallel-plate micro-and nanochannels with surface charge-dependent slip[J]. Micromachines, 2022, 13(12): 2166. doi: 10.3390/mi13122166
    [7] 邢靖楠, 菅永军. 矩形纳米管道中的电动能量转换效率[J]. 应用数学和力学, 2016, 37(4): 363-372. doi: 10.3879/j.issn.1000-0887.2016.04.004

    XING Jingnan, JIAN Yongjun. Electrokinetic energy conversion efficiency in rectangular nanochannels[J]. Applied Mathematics and Mechanics, 2016, 37(4): 363-372. (in Chinese) doi: 10.3879/j.issn.1000-0887.2016.04.004
    [8] 许丽娜, 菅永军. 柔性圆柱形微管道内的电动流动及传热研究[J]. 应用数学和力学, 2019, 40(4): 408-418. doi: 10.21656/1000-0887.390155

    XU Lina, JIAN Yongjun. Electrokinetic flow and heat transfer in soft microtubes[J]. Applied Mathematics and Mechanics, 2019, 40(4): 408-418. (in Chinese) doi: 10.21656/1000-0887.390155
    [9] 王爽, 菅永军. 周期壁面电势调制下平行板微管道中的电磁电渗流动[J]. 应用数学和力学, 2020, 41(4): 396-405. doi: 10.21656/1000-0887.400151

    WANG Shuang, JIAN Yongjun. Magnetohydrodynamic electroosmotic flow in zeta potential patterned micro-parallel channels[J]. Applied Mathematics and Mechanics, 2020, 41(4): 396-405. (in Chinese) doi: 10.21656/1000-0887.400151
    [10] TANG G, YAN D, YANG C, et al. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels[J]. Electrophoresis, 2006, 27(3): 628-639. doi: 10.1002/elps.200500681
    [11] LIU Q, JIAN Y, YANG L. Time periodic electroosmotic flow of the generalized Maxwell fluids between two micro-parallel plates[J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(9/10): 478-486.
    [12] LIU Q, JIAN Y, YANG L. Alternating current electroosmotic flow of the Jeffreys fluids through a slit microchannel[J]. Physics of Fluids, 2011, 23(10): 102001. doi: 10.1063/1.3640082
    [13] 郑佳璇, 梁韵笛, 菅永军. 高zeta势下Phan-Thien-Tanner(PTT)流体的电渗微推进器[J]. 应用数学和力学, 2023, 44(10): 1213-1225. doi: 10.21656/1000-0887.430346

    ZHENG Jiaxuan, LIANG Yundi, JIAN Yongjun. Electroosmotic micro thrusters of Phan-Thien-Tanner (PTT) fluid at high zeta potential[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1213-1225. (in Chinese) doi: 10.21656/1000-0887.430346
    [14] 段娟, 陈耀钦, 朱庆勇. 微扩张管道内幂律流体非定常电渗流动[J]. 物理学报, 2016, 65(3): 034702. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201603020.htm

    DUAN Juan, CHEN Yaoqin, ZHU Qingyong. Electroosmotically-driven flow of power-law fluid in a micro-diffuser[J]. Acta Physica Sinica, 2016, 65(3): 034702. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201603020.htm
    [15] WANG C Y. On Stokes flow between corrugated plates[J]. Journal of Applied Mechanics, 1979, 46: 462-464. doi: 10.1115/1.3424575
    [16] CHU Z K H. Slip flow in an annulus with corrugated walls[J]. Journal of Physics D: Applied Physics, 2000, 33(6): 627. doi: 10.1088/0022-3727/33/6/307
    [17] MALEVICH A E, MITYUSHEV V V, ADLER P M. Couette flow in channels with wavy walls[J]. Acta Mechanica, 2008, 197(3/4): 247-283.
    [18] 长龙, 刘全生, 菅永军, 等. 具有正弦粗糙度的环形微管道中脉冲流动[J]. 应用数学和力学, 2016, 37(10): 1118-1128. doi: 10.21656/1000-0887.370116

    CHANG Long, LIU Quansheng, JIAN Yongjun, et al. Oscillating flow in annular microchannels with sinusoidally corrugated walls[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1118-1128. (in Chinese) doi: 10.21656/1000-0887.370116
    [19] XIA Z, MEI R, SHEPLAK M, et al. Electroosmotically driven creeping flows in a wavy microchannel[J]. Microfluidics and Nanofluidics, 2009, 6: 37-52. doi: 10.1007/s10404-008-0290-8
    [20] CHO C C, CHEN C L. Electrokinetically-driven non-Newtonian fluid flow in rough microchannel with complex-wavy surface[J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 173: 13-20.
    [21] CHO C C, CHEN C L. Characteristics of combined electroosmotic flow and pressure-driven flow in microchannels with complex-wavy surfaces[J]. International Journal of Thermal Sciences, 2012, 61: 94-105. doi: 10.1016/j.ijthermalsci.2012.06.008
    [22] CHO C C, CHEN C L, CHEN C K. Characteristics of transient electroosmotic flow in microchannels with complex-wavy surface and periodic time-varying electric field[J]. Journal of Fluids Engineering, 2013, 135(2): 021301. doi: 10.1115/1.4023441
    [23] 肖水云, 李鸣, 杨大勇. PNP模型的正弦粗糙微通道幂律流体电渗流研究[J]. 机械科学与技术, 2017, 36(3): 442-447. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201703019.htm

    XIAO Shuiyun, LI Ming, YANG Dayong. Investigating effects of sinusoidal surface roughness on power-law fluid electroosmotic flow in microchannels using PNP model[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(3): 442-447. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201703019.htm
    [24] YOSHIDA H, KINJO T, WASHIZU H. Analysis of electro-osmotic flow in a microchannel with undulated surfaces[J]. Computers & Fluids, 2016, 124: 237-245. doi: 10.11897/SP.J.1016.2016.00237
    [25] SHU Y C, CHANG C C, CHEN Y S, et al. Electro-osmotic flow in a wavy microchannel: coherence between the electric potential and the wall shape function[J]. Physics of Fluids, 2010, 22(8): 082001. doi: 10.1063/1.3467035
    [26] CHANG L, JIAN Y, BUREN M, et al. Electroosmotic flow through a microtube with sinusoidal roughness[J]. Journal of Molecular Liquids, 2016, 220: 258-264. doi: 10.1016/j.molliq.2016.04.054
    [27] KERAMATI H, SADEGHI A, SAIDI M H, et al. Analytical solutions for thermo-fluidic transport in electroosmotic flow through rough microtubes[J]. International Journal of Heat and Mass Transfer, 2016, 92: 244-251. doi: 10.1016/j.ijheatmasstransfer.2015.08.089
    [28] MESSINGER R J, SQUIRES T M. Suppression of electro-osmotic flow by surface roughness[J]. Physical Review Letters, 2010, 105(14): 144503. doi: 10.1103/PhysRevLett.105.144503
    [29] FAKHARI M M, MIRBOZORGI S A. Numerical analysis of the effects of roughness on the electro-osmotic laminar flow between two parallel plates[J]. Meccanica, 2021, 56: 1025-1045. doi: 10.1007/s11012-020-01257-4
    [30] MA N, SUN Y, JIAN Y. Electromagnetohydrodynamic (EMHD) flow in a microchannel with random surface roughness[J]. Micromachines, 2023, 14: 1617. doi: 10.3390/mi14081617
    [31] WANG Z, SUN Y, JIAN Y. The effect of random roughness on the electromagnetic flow in a micropipe[J]. Micromachines, 2023, 14: 2054. doi: 10.3390/mi14112054
    [32] HOSHAM H A, THABET E N, ABD-ALLA A M, et al. Dynamic patterns of electroosmosis peristaltic flow of a Bingham fluid model in a complex wavy microchannel[J]. Scientific Reports, 2023, 13(1): 8686. doi: 10.1038/s41598-023-35410-2
    [33] ZHU Q, SU R, HU L, et al. Heat transfer enhancement for microchannel heat sink by strengthening fluids mixing with backward right-angled trapezoidal grooves in channel sidewalls[J]. International Communications in Heat and Mass Transfer, 2022, 135: 106106. doi: 10.1016/j.icheatmasstransfer.2022.106106
    [34] MOHAMMADI R, SHAHKARAMI N. Performance improvement of rectangular microchannel heat sinks using nanofluids and wavy channels[J]. Numerical Heat Transfer (Part A): Applications, 2022, 82(10): 619-639. doi: 10.1080/10407782.2022.2083840
    [35] MARTÍNEZ L, BAUTISTA O, ESCANDÓN J, et al. Electroosmotic flow of a Phan-Thien-Tanner fluid in a wavy-wall microchannel[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 498: 7-19.
    [36] MEHTA S K, PATI S, BARANYI L. Steric effect induced heat transfer for electroosmotic flow of Carreau fluid through a wavy microchannel[J]. Technische Mechanik-European Journal of Engineering Mechanics, 2023, 43(1): 2-12.
    [37] SI D, JIAN Y. Electromagnetohydrodynamic (EMHD) micropump of Jeffrey fluids through two parallel microchannels with corrugated walls[J]. Journal of Physics D: Applied Physics, 2015, 48(8): 085501. doi: 10.1088/0022-3727/48/8/085501
    [38] PARK H M, LEE J S, KIM T W. Comparison of the Nernst-Planck model and the Poisson-Boltzmann model for electroosmotic flows in microchannels[J]. Journal of Colloid and Interface Science, 2007, 315(2): 731-739. doi: 10.1016/j.jcis.2007.07.007
    [39] SOUSA J J, AFONSO A M, PINHO F T, et al. Effect of the skimming layer on electro-osmotic-Poiseuille flows of viscoelastic fluids[J]. Microfluidics and Nanofluidics, 2011, 10: 107-122. doi: 10.1007/s10404-010-0651-y
    [40] BIRD R B, CURTISS C F, ARMSTRONG R C, et al. Dynamics of Polymeric Liquids[M]. Kinetic Theory, Vol 2. Wiley, 1987.
  • 加载中
图(8)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  89
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-11
  • 修回日期:  2024-01-22
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回