王仁, 熊祝华,黄文彬. 塑性力学基础[M]. 北京: 科学出版社, 1982.(WANG Ren, XIONG Zhuhua, HAUNG Wenbin. Fundamentals of Plastic Mechanics[M]. Beijing: Science Press, 1982.(in Chinese))
|
[2]周喆, 秦伶俐, 黄文彬, 等. 有限变形下的等效应力和等效应变问题[J]. 应用数学和力学, 2004,25(5): 542-550.(ZHOU Zhe, QIN Lingli, HUANG Wenbin, et al. Effective stress and strain in finite deformation[J]. Applied Mathematics and Mechanics,2004,25(5): 542-550.(in Chinese))
|
[3]VERSHININ V V. A correct form of Bai-Wierzbicki plasticity model and its extension for strain rate and temperature dependence[J]. International Journal of Solids and Structures,2017,126: 150-162.
|
[4]POURHOSSEINI O, SHABANIMASHCOOL M. Development of an elasto-plastic constitutive model for intact rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2014,66: 1-12.
|
[5]张学言. 岩土塑性力学[M]. 北京: 人民交通出版社, 1993.(ZHANG Xueyan. Geotechnics Plastic Mechanics[M]. Beijing: China Communications Press, 1993.(in Chinese))
|
[6]BRIDGMAN P W. Studies in Large Plastic Flow and Fracture: With Special Emphasis on the Effects of Hydrostatic Pressure[M]. Cambridge: Harvard University Press, 1964.
|
[7]ALGARNI M, GHAZALI S, ZWAWI M. The emerging of stress triaxiality and Lode angle in both solid and damage mechanics: a review[J]. Mechanics of Solids,2021,56(5): 787-806.
|
[8]STOUGHTON T B, YOON J W. A pressure-sensitive yield criterion under a non-associated flow rule for sheet metal forming[J]. International Journal of Plasticity,2004,20(4/5): 705-731.
|
[9]ARETZ H. A consistent plasticity theory of incompressible and hydrostatic pressure sensitive metals[J]. Mechanics Research Communications,2007,34(4): 344-351.
|
[10]BAI Y, WIERZBICKI T. A new model of metal plasticity and fracture with pressure and Lode dependence[J]. International Journal of Plasticity,2008,24(6): 1071-1096.
|
[11]JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics,1985,21(1): 31-48.
|
[12]HAN Peihua, CHENG Peng, YUAN Shuai, et al. Characterization of ductile fracture criterion for API X80 pipeline steel based on a phenomenological approach[J]. Thin-Walled Structures,2021,164: 107254.
|
[13]VERSHININ V V. Validation of metal plasticity and fracture models through numerical simulation of high velocity perforation[J]. International Journal of Solids and Structures,2015,67/68: 127-138.
|
[14]PAREDES M, WIERZBICKI T. On mechanical response of zircaloy-4 under a wider range of stress states: from uniaxial tension to uniaxial compression[J]. International Journal of Solids and Structures,2020,206: 198-223.
|
[15]BAI Yuanli, WIERZBICKI T. Application of extended Mohr-Coulomb criterion to ductile fracture[J]. International Journal of Fracture,2010,161(1): 1-20.
|
[16]DA SILVA SANTOS I, SARZOSA D F B, PAREDES M. Ductile fracture modeling using the modified Mohr-Coulomb model coupled with a softening law for an ASTM A285 steel[J]. Thin-Walled Structures,2022,176: 109341.
|
[17]GRANUM H, MORIN D, BRVIK T, et al. Calibration of the modified Mohr-Coulomb fracture model by use of localization analyses for three tempers of an AA6016 aluminium alloy[J]. International Journal of Mechanical Sciences,2021,192: 106122.
|
[18]ABAQUS Inc. ABAQUS Analysis User’s Manual v[Z]. 2023.
|
[19]LI X X. Parametric study on numerical simulation of missile punching test using concrete damaged plasticity (CDP) model[J]. International Journal of Impact Engineering,2020,144: 103652.
|
[20]CHEN W F. Constitutive Equations for Engineering Materials: Plasticity and Modeling[M]. New York: John Wiley & Sons Inc, 1994.
|
[21]赵亚溥. 近代连续介质力学[M]. 北京: 科学出版社, 2016.(ZHAO Yapu. Modern Continuum Mechanics[M]. Beijing: Science Press, 2016.(in Chinese))
|