留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含多通道不同流向旋转输流管动力学特性分析

张博 王毅琛 蔡承宇 丁虎 陈立群

张博, 王毅琛, 蔡承宇, 丁虎, 陈立群. 含多通道不同流向旋转输流管动力学特性分析[J]. 应用数学和力学, 2025, 46(4): 438-450. doi: 10.21656/1000-0887.440359
引用本文: 张博, 王毅琛, 蔡承宇, 丁虎, 陈立群. 含多通道不同流向旋转输流管动力学特性分析[J]. 应用数学和力学, 2025, 46(4): 438-450. doi: 10.21656/1000-0887.440359
ZHANG Bo, WANG Yichen, CAI Chengyu, DING Hu, CHEN Liqun. Analysis on Dynamic Characteristics of Rotating Flow Tubes With Multi-Channel and Different Flow Directions[J]. Applied Mathematics and Mechanics, 2025, 46(4): 438-450. doi: 10.21656/1000-0887.440359
Citation: ZHANG Bo, WANG Yichen, CAI Chengyu, DING Hu, CHEN Liqun. Analysis on Dynamic Characteristics of Rotating Flow Tubes With Multi-Channel and Different Flow Directions[J]. Applied Mathematics and Mechanics, 2025, 46(4): 438-450. doi: 10.21656/1000-0887.440359

含多通道不同流向旋转输流管动力学特性分析

doi: 10.21656/1000-0887.440359
我刊编委陈立群来稿
基金项目: 

国家自然科学基金 11702033

国家自然科学基金 11872159

陕西省自然科学基金 2022JQ-019

上海市教委创新项目 2017-01-07-00-09-E00019

长安大学中央高校基本科研业务费专项资金 300102123201

详细信息
    作者简介:

    张博(1989—),男,副教授,博士,硕士生导师(E-mail: zhang_bo@chd.edu.cn)

    通讯作者:

    陈立群(1963—),男,教授,博士,博士生导师(通讯作者. E-mail: lqchen@shu.edu.cn)

  • 中图分类号: O32

Analysis on Dynamic Characteristics of Rotating Flow Tubes With Multi-Channel and Different Flow Directions

Contributed by CHEN Liqun, M.AMM Editorial Board
  • 摘要: 涡轮叶片是燃气轮机输出动力的关键部件, 为了叶片在高温环境下可以正常工作, 需要在内部设置冷却管通道. 叶片在内部流体和自身旋转的共同作用下, 有着复杂的动力学行为. 将叶片简化为多通道不同流向的旋转输流管的开放模型, 使用能量法推导动力学方程, 并进行复模态分析. 通过算例研究, 揭示了流向、流速和转速对系统稳定性和模态转迁的影响.
    1)  我刊编委陈立群来稿
  • 图  1  含三条通道旋转输流管模型

    Figure  1.  The model for the rotating pipe conveying fluid with 3 channels

    图  2  单通道模型下流速对前三阶固有频率的影响(Ω=0)

    Figure  2.  Effects of the flow velocity on the 1st 3 natural frequencies in a single channel model (Ω=0)

    图  3  单通道模型下转速对特征轨迹的影响

    Figure  3.  Influences of the rotational speed on characteristic trajectories with the single-channel model

    图  4  不同单位长度流体质量下,屈曲临界流速随转速的变化规律

    Figure  4.  Influences of the rotational speed on the critical buckling velocity of the single channel pipe

    图  5  不同单位长度流体质量下,颤振临界流速随转速的变化规律

    Figure  5.  Effects of the rotational speed on the critical flutter velocity of the single channel pipe

    图  6  流速对前三阶固有频率的影响(Ω=4)

    Figure  6.  The influences of the flow velocity on the 1st 3 natural frequencies (Ω=4)

    图  7  不同流速下,系统第二、三阶振型

    Figure  7.  The 2nd and 3rd order modal shapes of the system at different flow rates

    图  8  三通道模型下中间管道流体质量对前三阶特征轨迹的影响

    Figure  8.  Influences of the fluid mass in the intermediate pipeline on the 1st 3 order characteristic trajectories

    图  9  三通道模型下转速对前三阶特征轨迹的影响

    Figure  9.  Influences of rotational speed on the 1st 3 order characteristic trajectories in three-channel model

    表  1  系统前三阶固有频率的本文计算值与有限元软件对比(ρf=0)

    Table  1.   The calculated values of the 1st 3 natural frequencies of the system compared with the finite element software (ρf=0)

    parameter Ω=0 Ω=3
    1st mode 2nd mode 3rd mode 1st mode 2nd mode 3rd mode
    ω(present paper) 3.71 23.23 65.05 4.73 25.05 67.04
    ω(COMSOL) 3.70 22.78 62.14 4.73 24.64 64.22
    error /% 0.27 1.94 4.47 0 1.64 4.21
    parameter Ω=5 Ω=8
    1st mode 2nd mode 3rd mode 1st mode 2nd mode 3rd mode
    ω(present paper) 6.08 27.98 70.41 8.38 34.03 77.93
    ω(COMSOL) 6.10 27.63 67.75 8.53 33.84 75.64
    error /% -0.33 1.25 3.78 -1.79 0.56 2.94
    下载: 导出CSV
  • [1] HAN J C. Turbine blade cooling studies at Texas A&M University: 1980-2004[J]. Journal of Thermophysics and Heat Transfer, 2006, 20 (2): 161-187. doi: 10.2514/1.15403
    [2] 蒋洪德, 任静, 李雪英, 等. 重型燃气轮机现状与发展趋势[J]. 中国电机工程学报, 2014, 34 (29): 5096-5102.

    JIANG Hongde, REN Jing, LI Xueying, et al. Status and development trend of the heavy duty gas turbine[J]. Proceedings of the CSEE, 2014, 34 (29): 5096-5102. (in Chinese)
    [3] 张效伟, 朱惠人. 大型燃气涡轮叶片冷却技术[J]. 热能动力工程, 2008, 23 (1): 1-6.

    ZHANG Xiaowei, ZHU Huiren. Blade cooling technology of heavy-duty gas turbines[J]. Journal of Engineering for Thermal Energy and Power, 2008, 23 (1): 1-6. (in Chinese)
    [4] CARNEGIE W. Vibrations of rotating cantilever blading: theoretical approaches to the frequency problem based on energy methods[J]. Journal of Mechanical Engineering Science, 1959, 1 : 235-240. doi: 10.1243/JMES_JOUR_1959_001_028_02
    [5] LINER H S. The natural frequencies and modes of vibration of a rotating beam[J]. The Aeronautical Journal, 1954, 58 (525): 652-654.
    [6] PORAT I, NIV M. Vibration of a rotating shaft by the "Timoshenko beam" theory[J]. Israel Journal of Technology, 1971, 9 (5): 535-546.
    [7] MCIVER D B. Hamilton's principle for systems of changing mass[J]. Journal of Engineering Mathematics, 1973, 7 (3): 249-261. doi: 10.1007/BF01535286
    [8] HODGES D H, RUTKOWSKI M J. Free-vibration analysis of rotating beams by a variable-order finite-element method[J]. AIAA Journal, 1981, 19 (11): 1459-1466. doi: 10.2514/3.60082
    [9] PAÏDOUSSIS M P, ISSID N T. Dynamic stability of pipes conveying fluid[J]. Journal of Sound and Vibration, 1974, 33 (3): 267-294. doi: 10.1016/S0022-460X(74)80002-7
    [10] BENJAMIN T B. Dynamics of a system of articulated pipes conveying fluid-Ⅰ: theory[J]. Proceedings of the Royal Society A, 1961, 261 (1307): 457-486.
    [11] YANG J B, JIANG L J, CHEN D C. Dynamic modelling and control of a rotating Euler-Bernoulli beam[J]. Journal of Sound and Vibration, 2004, 274 (3/4/5): 863-875.
    [12] PANUSSIS D A, DIMAROGONAS A D. Linear in-plane and out-of-plane lateral vibrations of a horizontally rotating fluid-tube cantilever[J]. Journal of Fluids and Structures, 2000, 14 (1): 1-24.
    [13] 易浩然, 周坤, 代胡亮, 等. 含集中质量悬臂输流管的稳定性与模态演化特性研究[J]. 力学学报, 2020, 52 (6): 1800-1810.

    YI Haoran, ZHOU Kun, DAI Huliang, et al. Stability and mode evolution characteristics of a cantilevered fluid-conveying pipe attached with the lumped mass[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52 (6): 1800-1810. (in Chinese)
    [14] 赵桂欣, 孟帅, 车驰东, 等. 解释自由端含集中质量悬臂输流管固有频率计算悖论[J]. 振动与冲击, 2023, 42 (7): 18-24.

    ZHAO Guixin, MENG Shuai, CHE Chidong, et al. Explanation for paradox in natural frequency calculation of cantilever fluid-conveying pipe system with an end-mass[J]. Journal of Vibration and Shock, 2023, 42 (7): 18-24. (in Chinese)
    [15] 徐鉴, 杨前彪. 流体诱发水平悬臂输液管的内共振和模态转换(Ⅱ)[J]. 应用数学和力学, 2006, 27 (7): 825-832. http://www.applmathmech.cn/article/id/755

    XU Jian, YANG Qianbiao. Flow-induced internal resonances and mode exchange in horizontal cantilevered pipe conveying fluid(Ⅱ)[J]. Applied Mathematics and Mechanics, 2006, 27 (7): 825-832. (in Chinese) http://www.applmathmech.cn/article/id/755
    [16] 黄慧春, 张艳雷, 陈立群. 超临界下受迫输液管2∶1内共振的响应特性[J]. 噪声与振动控制, 2014, 34 (2): 8-11.

    HUANG Huichun, ZHANG Yanlei, CHEN Liqun. Resonance analysis of a forced fluid-conveying pipe with 2∶1 internal resonances under supercritical fluid velocity[J]. Noise and Vibration Control, 2014, 34 (2): 8-11. (in Chinese)
    [17] CHEN L Q, ZHANG Y L, ZHANG G C, et al. Evolution of the double-jumping in pipes conveying fluid flowing at the supercritical speed[J]. International Journal of Non-Linear Mechanics, 2014, 58 : 11-21.
    [18] 张国策, 丁虎, 陈立群. 复模态分析超临界轴向运动梁横向非线性振动[J]. 动力学与控制学报, 2015, 13 (4): 283-287.

    ZHANG Guoce, DING Hu, CHEN Liqun. Complex modal analysis of transversally non-linear vibration for supercritically axially moving beams[J]. Journal of Dynamics and Control, 2015, 13 (4): 283-287. (in Chinese)
    [19] 张凯凯, 谭霞, 丁虎, 等. 超临界输流管道3∶1内共振下参激振动响应[J]. 应用数学和力学, 2018, 39 (11): 1227-1235. doi: 10.21656/1000-0887.390121

    ZHANG Kaikai, TAN Xia, DING Hu, et al. Parametric vibration responses of supercritical fluid-conveying pipes in 3∶1 internal resonance[J]. Applied Mathematics and Mechanics, 2018, 39 (11): 1227-1235. (in Chinese) doi: 10.21656/1000-0887.390121
    [20] LIANG F, YANG X D, QIAN Y J, et al. Transverse free vibration and stability analysis of spinning pipes conveying fluid[J]. International Journal of Mechanical Sciences, 2018, 137 : 195-204.
    [21] YOON H I, SON I S. Dynamic response of rotating flexible cantilever pipe conveying fluid with tip mass[J]. International Journal of Mechanical Sciences, 2007, 49 (7): 878-887.
    [22] BAHAADINI R, SAIDI A R, HOSSEINI M. Dynamic stability of fluid-conveying thin-walled rotating pipes reinforced with functionally graded carbon nanotubes[J]. Acta Mechanica, 2018, 229 (12): 5013-5029.
    [23] 张博, 史天姿, 张贻林, 等. 旋转输液管动力稳定性理论分析[J]. 应用数学和力学, 2022, 43 (2): 166-175.

    ZHANG Bo, SHI Tianzi, ZHANG Yilin, et al. Theoretical analysis on dynamic stability of rotating pipes conveying fluid[J]. Applied Mathematics and Mechanics, 2022, 43 (2): 166-175. (in Chinese)
    [24] 杨佳丽, 杨虹, 李伟. 旋转Timoshenko输流管道的固有频率和稳定性分析[J]. 动力学与控制学报, 2023, 21 (2): 58-65.

    YANG Jiali, YANG Hong, LI Wei. Natural frequency and stability analysis of rotating Timoshenko pipe conveying fluid[J]. Journal of Dynamics and Control, 2023, 21 (2): 58-65. (in Chinese)
    [25] 马永奇, 沈义俊, 尤云祥, 等. 附加重块和弹簧刚度对垂直悬臂输流管动力学稳定性的影响研究[J]. 中国造船, 2023, 64 (3): 212-222.

    MA Yongqi, SHEN Yijun, YOU Yunxiang, et al. Dynamic stability analysis with additional masses and springs stiffness in vertical cantilevered pipes conveying fluid[J]. Shipbuilding of China, 2023, 64 (3): 212-222. (in Chinese)
    [26] 郭勇. 具有非对称横截面的悬臂输流管道的非线性振动特征[J]. 动力学与控制学报, 2023, 21 (11): 81-94.

    GUO Yong. Nonlinear vibration characteristics of cantilevered fluid-conveying pipe with asymmetric cross-section[J]. Journal of Dynamics and Control, 2023, 21 (11): 81-94. (in Chinese)
    [27] 唐冶, 高传康, 丁千, 等. 输流管道动力学与控制的最新进展[J]. 动力学与控制学报, 2023, 21 (6): 18-30.

    TANG Ye, GAO Chuankang, DING Qian, et al. Review on dynamic and control of pipes conveying fluidan[J]. Journal of Dynamics and Control, 2023, 21 (6): 18-30. (in Chinese)
    [28] BALKAYA M, KAYA M O, SAGLAMER A. Free transverse vibrations of an elastically connected simply supported twin pipe system[J]. Structural Engineering and Mechanics, 2010, 34 (5): 549-561.
    [29] WANG P F, ZHAO W S, JIANG J, et al. Experimental and numerical investigations of flow-induced vibration of tube arrays subjected to cross flow[J]. International Journal of Pressure Vessels and Piping, 2019, 176 : 103956.
    [30] GAO P, ZHANG Y, LIU X, et al. Vibration analysis of aero parallel-pipeline systems based on a novel reduced order modeling method[J]. Journal of Mechanical Science and Technology, 2020, 34 (8): 3137-3146.
    [31] GUO X M, GE H, XIAO C L, et al. Vibration transmission characteristics analysis of the parallel fluid-conveying pipes system: numerical and experimental studies[J]. Mechanical Systems and Signal Processing, 2022, 177 : 109180.
    [32] GUO X M, XIAO C L, MA H, et al. Improved frequency modeling and solution for parallel liquid-filled pipes considering both fluid-structure interaction and structural coupling[J]. Applied Mathematics and Mechanics(English Edition), 2022, 43 (8): 1269-1288.
    [33] 张博, 郑昊楷, 孙东生, 等. 双通道旋转输流管临界流速和振动模态分析[J]. 力学学报, 2023, 55 (1): 182-191.

    ZHANG Bo, ZHENG Haokai, SUN Dongsheng, et al. Theoretical analysis on the critical flow velocity and vibration mode of a twin-channel rotating pipe[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55 (1): 182-191. (in Chinese)
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  19
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-19
  • 修回日期:  2024-05-11
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回