PESKIN C S. The immersed boundary method[J].Acta Numerica,2002,11: 479-517.
|
[2]MITTAL R, IACCARINO G. Immersed boundary methods[J].Annual Review of Fluid Mechanics,2005,37: 239-261.
|
[3]CLARKE D K, SALAS M D, HASSAN H A. Euler calculations for multielement airfoils using Cartesian grids[J].AIAA Journal,1986,24(3): 353-358.
|
[4]UDAYKUMAR H S, SHYY W, RAO M M. ELAFINT: a mixed Eulerian-Lagrangian method for fluid flows with complex and moving boundaries[J].International Journal for Numerical Methods in Fluids,1996,22(8): 691-712.
|
[5]YE T, MITTAL R, UDAYKUMAR H S, et al. An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries[J].Journal of Computational Physics,1999,156(2): 209-240.
|
[6]FADLUN E A, VERZICCO R, ORLANDI P, et al. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations[J].Journal of Computational Physics,2000,161(1): 35-60.
|
[7]LUO H, MITTAL R, ZHENG X, et al. An immersed-boundary method for flow-structure interaction in biological systems with application to phonation[J].Journal of Computational Physics,2008,227(22): 9303-9332.
|
[8]TSENG Y H, FERZIGER J H. A ghost-cell immersed boundary method for flow in complex geometry[J].Journal of Computational Physics,2003,192(2): 593-623.
|
[9]KIM J, KIM D, CHOI H. An immersed-boundary finite-volume method for simulations of flow in complex geometries[J].Journal of Computational Physics,2001,171(1): 132-150.
|
[10]GHIAS R, MITTAL R, DONG H. A sharp interface immersed boundary method for compressible viscous flows[J].Journal of Computational Physics,2007,225(1): 528-553.
|
[11]GILMANOV A, SOTIROPOULOS F. A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies[J].Journal of Computational Physics,2005,207(2): 457-492.
|
[12]KIM D, CHOI H. Immersed boundary method for flow around an arbitrarily moving body[J].Journal of Computational Physics,2006,212(2): 662-680.
|
[13]SCHNEIDERS L, HARTMANN D, MEINKE M, et al. An accurate moving boundary formulation in cut-cell methods[J].Journal of Computational Physics,2013,235: 786-809.
|
[14]FAVIER J, REVELL A, PINELLI A. A lattice Boltzmann-immersed boundary method to simulate the fluid interaction with moving and slender flexible objects[J].Journal of Computational Physics,2014,261: 145-161.
|
[15]MITTAL R, DONG H, BOZKURTTAS M, et al. A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries[J].Journal of Computational Physics,2008,227(10): 4825-4852.
|
[16]TORO E F.Riemann Solvers and Numerical Methods for Fluid Dynamics: a Practical Introduction[M]. Berlin, Heidelberg: Springer, 2013.
|
[17]郑素佩, 李霄, 赵青宇, 等. 求解二维浅水波方程的旋转混合格式 [J]. 应用数学和力学, 2022,43(2): 176-186. (ZHENG Supei, LI Xiao, ZHAO Qingyu, et al. A rotated mixed scheme for solving 2D shallow water equations[J].Applied Mathematics and Mechanics,2022,43(2): 176-186. (in Chinese))
|
[18]HARTEN A, LAX P D, VAN LEER B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[J].SIAM Review,1983,25(1): 35-61.
|
[19]OSHER S, FEDKIW R, PIECHOR K. Level set methods and dynamic implicit surfaces[J].Applied Mechanics Reviews,2004,57(3): B15.
|
[20]李慧玲, 胡晓磊, 余子寒, 等. 玻璃微珠液滴碰撞分离过程数值研究[J]. 应用数学和力学, 2023,44(12): 1512-1521. (LI Huiling, HU Xiaolei, YU Zihan, et al. Numerical study on the collision-separation process of glass bead droplets[J].Applied Mathematics and Mechanics,2023,44(12): 1512-1521. (in Chinese))
|
[21]SHEPARD D. A two-dimensional interpolation function for irregularly-spaced data[C]//Proceedings of the 〖STBX〗1968 23rd ACM National Conference. 1968: 517-524.
|
[22]FRANKE R, NIELSON G. Smooth interpolation of large sets of scattered data[J].International Journal for Numerical Methods in Engineering,1980,15(11): 1691-1704.
|
[23]MAJUMDAR S, IACCARINO G, DURBIN P. RANS solvers with adaptive structured boundary non-conforming grids[J].Annual Research Briefs,2001,1: 179.
|
[24]徐维铮, 吴卫国. 三阶WENO-Z格式精度分析及其改进格式[J]. 应用数学和力学, 2018,39(8): 946-960. (XU Weizheng, WU Weiguo. Precision analysis of the 3rd-order WENO-Z scheme and its improved scheme[J].Applied Mathematics and Mechanics,2018,39(8): 946-960. (in Chinese))
|