留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变系数分数阶扩散模型在多孔介质中的应用

颜琪 鲁祯昊 王虹静 范文萍 马铭伟 牛雅楠 王梁俊豪

颜琪, 鲁祯昊, 王虹静, 范文萍, 马铭伟, 牛雅楠, 王梁俊豪. 变系数分数阶扩散模型在多孔介质中的应用[J]. 应用数学和力学, 2025, 46(1): 84-91. doi: 10.21656/1000-0887.450010
引用本文: 颜琪, 鲁祯昊, 王虹静, 范文萍, 马铭伟, 牛雅楠, 王梁俊豪. 变系数分数阶扩散模型在多孔介质中的应用[J]. 应用数学和力学, 2025, 46(1): 84-91. doi: 10.21656/1000-0887.450010
YAN Qi, LU Zhenhao, WANG Hongjing, FAN Wenping, MA Mingwei, NIU Yanan, WANG Liangjunhao. Applications of a Fractional Diffusion Model With Variable Coefficients in Porous Medium[J]. Applied Mathematics and Mechanics, 2025, 46(1): 84-91. doi: 10.21656/1000-0887.450010
Citation: YAN Qi, LU Zhenhao, WANG Hongjing, FAN Wenping, MA Mingwei, NIU Yanan, WANG Liangjunhao. Applications of a Fractional Diffusion Model With Variable Coefficients in Porous Medium[J]. Applied Mathematics and Mechanics, 2025, 46(1): 84-91. doi: 10.21656/1000-0887.450010

变系数分数阶扩散模型在多孔介质中的应用

doi: 10.21656/1000-0887.450010
基金项目: 

国家自然科学基金 11801221

江苏省自然科学基金 BK20180586

详细信息
    作者简介:

    颜琪(2003—),男,本科生(E-mail: 1131210324@stu.jiangnan.edu.cn)

    通讯作者:

    范文萍(1990—),女,副教授,博士(通讯作者. E-mail: wpfan@jiangnan.edu.cn)

  • 中图分类号: O29

Applications of a Fractional Diffusion Model With Variable Coefficients in Porous Medium

  • 摘要: 针对多孔介质中的反常扩散行为, 提出了利用变系数的时间分数阶扩散模型模拟煤炭介质中甲烷的反常扩散现象. 将常系数时间分数阶分形扩散模型推广至变系数情形, 并建立了变系数分数阶模型的非均匀网格数值求解格式;在模型数值解的基础上, 基于实验测量数据, 提出了高效的布谷鸟搜索算法, 同时估计了模型中的多个重要参数. 最后通过数值实验, 验证了变系数分数阶扩散模型及布谷鸟算法在研究多孔介质中反常扩散现象正反问题中的有效性.
  • 图  1  变系数时间分数阶扩散模型的(α, df, θ, β)参数迭代结果

    Figure  1.  Parameter (α, df, θ, β) iteration results of the time fractional diffusion model with variable coefficients

    图  2  变系数时间分数阶扩散模型的数据拟合图

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  Data fittings of the time fractional diffusion model with variable coefficients

    图  3  变系数时间分数阶扩散模型的(α, df, θ, β)参数迭代结果

    Figure  3.  Parameter (α, df, θ, β) iteration results of the time fractional diffusion model with variable coefficients

    图  4  布谷鸟搜索算法的适应度函数图

    Figure  4.  The fitness function of the cuckoo search algorithm

    图  5  快速格式的计算时间

    Figure  5.  The calculation time of the fast scheme

  • [1] 卢恋, 任伟新, 王世东. 基于分数阶Fourier变换的结构瞬时频率识别[J]. 应用数学和力学, 2022, 43(8): 825-834. doi: 10.21656/1000-0887.420241

    LU Lian, REN Weixin, WANG Shidong. Structural instantaneous frequency identification based on the fractional Fourier transform[J]. Applied Mathematics and Mechanics, 2022, 43(8): 825-834. (in Chinese) doi: 10.21656/1000-0887.420241
    [2] BAZHLEKOVA E, BAZHLEKOV I. Viscoelastic flows with fractional derivative models: computational approach by convolutional calculus of dimovski[J]. Fractional Calculus and Applied Analysis, 2014, 17(4): 954-976. doi: 10.2478/s13540-014-0209-x
    [3] JIANG X, XU M, QI H. The fractional diffusion model with an absorption term and modified Fick's law for non-local transport processes[J]. Nonlinear Analysis: Real World Applications, 2010, 11(1): 262-269. doi: 10.1016/j.nonrwa.2008.10.057
    [4] CHEN S, LIU F, BURRAGE K. Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media[J]. Computers & Mathematics With Applications, 2014, 67(9): 1673-1681.
    [5] PAN M, ZHENG L, LIU F, et al. A spatial-fractional thermal transport model for nanofluid in porous media[J]. Applied Mathematical Modelling, 2018, 53: 622-634. doi: 10.1016/j.apm.2017.08.026
    [6] JIANG H, CHENG Y, YUAN L, et al. A fractal theory based fractional diffusion model used for the fast desorption process of methane in coal[J]. Chaos, 2013, 23(3): 033111. doi: 10.1063/1.4813597
    [7] YANG X, JIANG X, KANG J. Parameter identification for fractional fractal diffusion model based on experimental data[J]. Chaos, 2019, 29(8): 083134. doi: 10.1063/1.5111832
    [8] FAN W, JIANG X, CHEN S. Parameter estimation for the fractional fractal diffusion model based on its numerical solution[J]. Computers & Mathematics With Applications, 2016, 71(2): 642-651.
    [9] REN J, WANG Z, LI B, et al. Fractal-time-dependent fick diffusion model of coal particles based on desorption-diffusion experiments[J]. Energy & Fuels, 2022, 36(12): 6198-6215.
    [10] PODLUBNY I. Fractional Differential Equations[M]. San Diego: Academic Press, 1999.
    [11] 李志强, 刘勇, 许彦鹏, 等. 煤粒多尺度孔隙中瓦斯扩散机理及动扩散系数新模型[J]. 煤炭学报, 2016, 41(3): 633-643.

    LI Zhiqiang, LIU Yong, XU Yanpeng, et al. Gas diffusion mechanism in multi-scale pores of coal particles and new diffusion model of dynamic diffusion coefficient[J]. Journal of China Coal Society, 2016, 41(3): 633-643. (in Chinese)
    [12] CHEN H, STYNES M. A high order method on graded meshes for a time-fractional diffusion problem[M]//Lecture Notes in Computer Science. Cham: Springer, 2019: 15-27.
    [13] LIAO H L, TANG T, ZHOU T. A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations[J]. Journal of Computational Physics, 2020, 414: 109473. doi: 10.1016/j.jcp.2020.109473
    [14] LU Z, FAN W. A fast algorithm for multi-term time-space fractional diffusion equation with fractional boundary condition[J/OL]. Numerical Algorithms, 2024[2024-07-24]. https://doi.org/10.1007/s11075-024-01830-y.
    [15] CHI X Q, YU B, JIANG X Y. Parameter estimation for the time fractional heat conduction model based on experimental heat flux data[J]. Applied Mathematics Letters, 2020, 102: 106094. doi: 10.1016/j.aml.2019.106094
    [16] LIU Q, WANG J, LIU J, et al. Determining diffusion coefficients of coal particles by solving the inverse problem based on the data of methane desorption measurements[J]. Fuel, 2022, 308: 122045. doi: 10.1016/j.fuel.2021.122045
  • 加载中
图(5)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  17
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-12
  • 修回日期:  2024-07-24
  • 刊出日期:  2025-01-01

目录

    /

    返回文章
    返回