留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重构具有Wentzell边界条件的抛物型方程的热源

伊海鸿 杨柳 田瑜

伊海鸿, 杨柳, 田瑜. 重构具有Wentzell边界条件的抛物型方程的热源[J]. 应用数学和力学, 2025, 46(4): 505-518. doi: 10.21656/1000-0887.450029
引用本文: 伊海鸿, 杨柳, 田瑜. 重构具有Wentzell边界条件的抛物型方程的热源[J]. 应用数学和力学, 2025, 46(4): 505-518. doi: 10.21656/1000-0887.450029
YI Haihong, YANG Liu, TIAN Yu. Reconstruction of Heat Sources for Parabolic Equations With Wentzell Boundary Conditions[J]. Applied Mathematics and Mechanics, 2025, 46(4): 505-518. doi: 10.21656/1000-0887.450029
Citation: YI Haihong, YANG Liu, TIAN Yu. Reconstruction of Heat Sources for Parabolic Equations With Wentzell Boundary Conditions[J]. Applied Mathematics and Mechanics, 2025, 46(4): 505-518. doi: 10.21656/1000-0887.450029

重构具有Wentzell边界条件的抛物型方程的热源

doi: 10.21656/1000-0887.450029
基金项目: 

国家自然科学基金 61663018

国家自然科学基金 11961042

甘肃省自然科学基金 25JRRA163

甘肃省自然科学基金 25JRRA952

详细信息
    作者简介:

    伊海鸿(2000—),女,硕士生(E-mail: yihaihong2000@163.com)

    通讯作者:

    杨柳(1977—),女,教授,博士(通讯作者. E-mail: l_yang218@163.com)

  • 中图分类号: O175.26

Reconstruction of Heat Sources for Parabolic Equations With Wentzell Boundary Conditions

  • 摘要: 该文主要研究以Wentzell边界条件为背景, 利用终端温度测量值在抛物热传导方程中重构与空间相关源项的反问题, 这一研究在热传导工程问题中经常出现. 该研究的难点是对Wentzell边界条件的处理, 通过应用散度定理使得边界条件可以与抛物方程相结合, 而在不同的边界条件下,极值原理的证明也有所区别. 由于原问题的不适定性, 基于最优控制理论的框架, 对原问题进行优化, 建立了正则化解的存在性和所满足的必要条件, 并且在极值原理成立的情形下, 证明了正则化解的唯一性和稳定性.
  • [1] VOGT H, VOIGT J. Wentzell boundary conditions in the context of Dirichlet forms[J]. Advances in Differential Equations, 2003, 8 (7): 821-842.
    [2] FAVINI A, GOLDSTEIN J A, ROMANELLI S, et al. The heat equation with nonlinear general Wentzell boundary condition[J]. Advances in Differential Equations, 2006, 11 (5): 481-510.
    [3] GUIDETTI D. Parabolic problems with general Wentzell boundary conditions and diffusion on the boundary[J]. Communications on Pure and Applied Analysis, 2016, 15 (4): 1401-1417. doi: 10.3934/cpaa.2016.15.1401
    [4] VÁZQUEZ J L, VITILLARO E. Heat equation with dynamical boundary conditions of reactive-diffusive type[J]. Journal of Differential Equations, 2011, 250 (4): 2143-2161. doi: 10.1016/j.jde.2010.12.012
    [5] ISMAILOV M I. Inverse source problem for heat equation with nonlocal wentzell boundary condition[J]. Results in Mathematics, 2018, 73 (2): 68. doi: 10.1007/s00025-018-0829-2
    [6] ISMAILOV M I, KANCA F, LESNIC D. Determination of a time-dependent heat source under nonlocal boundary and integral overdetermination conditions[J]. Applied Mathematics and Computation, 2011, 218 (8): 4138-4146. doi: 10.1016/j.amc.2011.09.044
    [7] KERIMOV N B, ISMAILOV M I. Direct and inverse problems for the heat equation with a dynamic-type boundary condition[J]. IMA Journal of Applied Mathematics, 2015, 80 (5): 1519-1533. doi: 10.1093/imamat/hxv005
    [8] YIMAMU Y, DENG Z C, YANG L. An inverse volatility problem in a degenerate parabolic equation in a bounded domain[J]. AIMS Mathematics, 2022, 7 (10): 19237-19266. doi: 10.3934/math.20221056
    [9] JOHANSSON T, LESNIC D. Determination of a spacewise dependent heat source[J]. Journal of Computational and Applied Mathematics, 2007, 209 (1): 66-80. doi: 10.1016/j.cam.2006.10.026
    [10] YANG L, YU J N, LUO G W, et al. Reconstruction of a space and time dependent heat source from finite measurement data[J]. International Journal of Heat and Mass Transfer, 2012, 55 (23/24): 6573-6581.
    [11] 耿肖肖, 程浩. 一类球型区域上变系数反向热传导问题[J]. 应用数学和力学, 2021, 42 (7): 723-734. doi: 10.21656/1000-0887.410297

    GENG Xiaoxiao, CHENG Hao. The backward heat conduction problem with variable coefficients in a spherical domain[J]. Applied Mathematics and Mechanics, 2021, 42 (7): 723-734. (in Chinese) doi: 10.21656/1000-0887.410297
    [12] 陈琛, 冯晓莉, 陈汉章. 一类随机微分方程的随机源反演方法和性质[J]. 应用数学和力学, 2023, 44 (7): 847-856. doi: 10.21656/1000-0887.430170

    CHEN Chen, FENG Xiaoli, CHEN Hanzhang. The random source inverse method and properties for a class of stochastic differential equations[J]. Applied Mathematics and Mechanics, 2023, 44 (7): 847-856. (in Chinese) doi: 10.21656/1000-0887.430170
    [13] 刘翻丽, 解金鑫, 杨涛. 变系数导热方程的Robin系数反演问题[J]. 应用数学学报, 2021, 44 (4): 574-588.

    LIU Fanli, XIE Jinxin, YANG Tao. Robin coefficient inversion problem of variable coefficient heat conduction equation[J]. Acta Mathematicae Applicatae Sinica, 2021, 44 (4): 574-588. (in Chinese)
    [14] 尹丽君, 温鑫亮. 具有Wentzel型边界条件的反源问题解的唯一性[J]. 兰州交通大学学报, 2020, 39 (4): 132-137.

    YIN Lijun, WEN Xinliang. Uniqueness of the solution to the inverse source problem with a Wentzel boundary condition[J]. Journal of Lanzhou Jiaotong University, 2020, 39 (4): 132-137. (in Chinese)
    [15] FAVINI A, GOLDSTEIN G R, GOLDSTEIN J A, et al. The heat equation with generalized Wentzell boundary condition[J]. Journal of Evolution Equations, 2002, 2 (1): 1-19.
    [16] 姜礼尚, 陈亚浙, 刘西垣, 等. 数学物理方程讲义[M]. 3版. 北京: 高等教育出版社, 2007.

    JIANG Lishang, CHEN Yazhe, LIU Xiyuan, et al. Lectures on Mathematical and Physical Equations[M]. 3rd ed. Beijing: Higher Education Press, 2007. (in Chinese)
    [17] 伍卓群, 尹景学, 王春朋. 椭圆与抛物型方程引论[M]. 北京: 科学出版社, 2003.

    WU Zhuoqun, YIN Jingxue, WANG Chunpeng. Introduction to Elliptic and Parabolic Equations[M]. Beijing: Science Press, 2003. (in Chinese)
  • 加载中
计量
  • 文章访问数:  78
  • HTML全文浏览量:  26
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-02
  • 修回日期:  2024-11-17
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回