留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维有限元的EEP单元及其自适应分析

杨帅 袁驷

杨帅, 袁驷. 一维有限元的EEP单元及其自适应分析[J]. 应用数学和力学, 2025, 46(1): 1-11. doi: 10.21656/1000-0887.450036
引用本文: 杨帅, 袁驷. 一维有限元的EEP单元及其自适应分析[J]. 应用数学和力学, 2025, 46(1): 1-11. doi: 10.21656/1000-0887.450036
YANG Shuai, YUAN Si. EEP Elements for the 1 D Finite Element Method and the Adaptivity Analysis[J]. Applied Mathematics and Mechanics, 2025, 46(1): 1-11. doi: 10.21656/1000-0887.450036
Citation: YANG Shuai, YUAN Si. EEP Elements for the 1 D Finite Element Method and the Adaptivity Analysis[J]. Applied Mathematics and Mechanics, 2025, 46(1): 1-11. doi: 10.21656/1000-0887.450036

一维有限元的EEP单元及其自适应分析

doi: 10.21656/1000-0887.450036
基金项目: 

国家自然科学基金 51878383

国家自然科学基金 51378293

详细信息
    作者简介:

    袁驷(1953—),男,教授,博士

    通讯作者:

    杨帅(1997—),男,博士生(通讯作者. E-mail: s-yang20@mails.tsinghua.edu.cn)

  • 中图分类号: O342

EEP Elements for the 1 D Finite Element Method and the Adaptivity Analysis

  • 摘要:m(>1)次单元,基于单元能量投影(element energy projection,简称EEP)法提出的简约格式位移解u*具有比常规有限元解uh至少高一阶的精度,据此提出了EEP单元概念,并给出以EEP单元作为最终解的自适应有限元求解策略. 通过编制相应的计算程序分析了一维非自伴随问题,计算结果与理论预期吻合较好,验证了自适应求解策略的有效性和可靠性. 研究结果表明:该法可以给出按最大模度量、逐点满足误差限的解答,相较于常规单元,最终的求解单元数更少.
  • 图  1  误差分布

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  The error distribution

    图  2  问题的解析解

    Figure  2.  The analytical solution to the problem

    图  3  单元分布示意图

    Figure  3.  The element distribution diagram

    图  4  三次单元自适应误差图

    Figure  4.  Error distributions of cubic elements

    图  5  3.1.2小节问题的解析解

    Figure  5.  Analytical solutions to the problem of section 3.1.2

    图  6  案例1的单元分布示意图

    Figure  6.  Element distributions of case 1

    图  7  案例1的三次单元自适应误差图

    Figure  7.  Error distributions of cubic elements of case 1

    图  8  案例2的三次EEP单元分布

    Figure  8.  The cubic EEP element distribution of case 2

    图  9  案例2的三次EEP单元误差图

    Figure  9.  The error distribution of cubic EEP elements of case 2

    图  10  3.1.3小节问题的解析解

    Figure  10.  The analytical solution to the problem of section 3.1.3

    图  11  3.1.3小节单元分布示意图

    Figure  11.  The element distribution diagram of section 3.1.3

    图  12  3.1.3小节三次单元自适应误差图

    Figure  12.  Error distributions of cubic elements of section 3.1.3

    图  13  自适应收敛率

    Figure  13.  Adaptive convergence rates

    表  1  常规单元自适应求解策略结果(Tl=1×10-8)

    Table  1.   Results of the conventional element adaptive strategy (Tl=1×10-8)

    m Ne Ndof Nadp hmax hmin emaxh
    3 26 79 6 0.125 0 0.015 6 0.804 0
    4 11 45 5 0.250 0 0.031 3 0.862 9
    5 7 36 4 0.250 0 0.062 5 0.562 6
    下载: 导出CSV

    表  2  EEP单元自适应求解策略结果(Tl=1×10-8)

    Table  2.   Results of the EEP element adaptive strategy (Tl=1×10-8)

    m Ne Ndof Nadp hmax hmin emaxh
    3 15 46 5 0.125 0 0.031 3 0.796 7
    4 9 37 4 0.250 0 0.062 5 0.458 0
    5 6 31 3 0.250 0 0.125 0 0.228 7
    下载: 导出CSV

    表  3  常规单元和EEP单元结果对比(Tl=1×10-10)

    Table  3.   Comparison of results between conventional elements and EEP elements(Tl=1×10-10)

    element type convergence order Ne Ndof Nadp emaxh(emax*)
    quartic conventional element[11] h5 30 121 6 0.870 0
    cubic EEP element h5 36 109 6 0.932 0
    下载: 导出CSV

    表  4  常规单元自适应求解策略结果(案例1)

    Table  4.   Results of the conventional element adaptive strategy (case 1)

    m Ne Ndof Nadp hmax hmin emaxh
    3 48 145 7 0.061 3 0.009 4 0.829 6
    4 19 77 6 0.148 5 0.020 4 0.810 9
    5 9 46 5 0.240 0 0.040 5 0.733 2
    下载: 导出CSV

    表  5  EEP单元自适应求解策略结果(案例1)

    Table  5.   Results of the EEP element adaptive strategy (case 1)

    m Ne Ndof Nadp hmax hmin emaxh
    3 27 82 7 0.091 0 0.018 8 0.971 3
    4 15 61 5 0.113 8 0.047 5 0.430 5
    5 9 46 4 0.250 0 0.067 5 0.232 0
    下载: 导出CSV

    表  6  常规单元和EEP单元结果对比(Tl=1×10-9)

    Table  6.   Comparison of results between conventional elements and EEP elements(Tl=1×10-9)

    element type convergence order Ne Ndof Nadp emaxh(emax*)
    quartic conventional element[11] h5 45 181 7 0.838 8
    cubic EEP element h5 66 199 8 0.891 9
    下载: 导出CSV

    表  7  常规单元自适应求解策略结果(案例2)

    Table  7.   Results of the conventional element adaptive strategy (case 2)

    m Ne Ndof Nadp hmax hmin emaxh
    3 125 376 11 0.030 9 5.9×10-4 1.037 8
    4 50 201 10 0.061 9 1.3×10-3 0.845 2
    5 31 156 9 0.091 1 2.6×10-3 0.758 3
    下载: 导出CSV

    表  8  EEP单元自适应求解策略结果(案例2)

    Table  8.   Results of the EEP element adaptive strategy (case 2)

    m Ne Ndof Nadp hmax hmin emaxh
    3 81 244 11 0.036 4 1.4×10-3 1.019 3
    4 42 169 10 0.064 4 2.2×10-3 0.723 5
    5 30 151 8 0.072 6 7.5×10-3 0.673 5
    下载: 导出CSV

    表  9  常规单元和EEP单元结果对比(Tl=1×10-10)

    Table  9.   Comparison of results between conventional elements and EEP elements(Tl=1×10-10)

    element type convergence order Ne Ndof Nadp emaxh(emax*)
    quartic conventional element[10] h5 121 485 11 0.948 2
    cubic EEP element h5 200 601 13 0.959 3
    下载: 导出CSV

    表  10  常规单元自适应求解策略结果(Tl=1×10-3)

    Table  10.   Results of the conventional element adaptive strategy (Tl=1×10-3)

    m Ne Ndof Nadp hmax hmin emaxh
    3 10 31 9 0.650 0 7.9×10-5 0.740 0
    4 9 37 8 0.650 0 2.3×10-4 0.706 8
    5 8 41 7 0.650 0 6.4×10-4 0.894 2
    下载: 导出CSV

    表  11  EEP单元自适应求解策略结果(Tl=1×10-3)

    Table  11.   Results of the EEP element adaptive strategy (Tl=1×10-3)

    m Ne Ndof Nadp hmax hmin emaxh
    3 3 10 2 0.660 0 0.129 2 0.456 3
    4 3 13 2 0.630 0 0.144 3 0.252 8
    5 2 11 1 0.620 0 0.380 0 0.649 1
    下载: 导出CSV

    表  12  常规单元和EEP单元结果对比(Tl=1×10-4)

    Table  12.   Comparison of results between conventional elements and EEP elements(Tl=1×10-4)

    element type convergence order Ne Ndof Nadp emaxh(emax*)
    quartic conventional element[11] h5 13 53 12 0.866 5
    cubic EEP element h5 5 16 4 0.459 2
    下载: 导出CSV
  • [1] BABUŠKA I, RHEINBOLDT W C. A-posteriori error estimates for the finite element method[J]. International Journal for Numerical Methods in Engineering, 1978, 12 (10): 1597-1615. doi: 10.1002/nme.1620121010
    [2] BABUŠKA I, RHEINBOLDT W C. Adaptive approaches and reliability estimations in finite element analysis[J]. Computer Methods in Applied Mechanics and Engineering, 1979, 17 : 519-540.
    [3] STRANG W G, FIX G J. An Analysis of the Finite Element Method[M]. New Jersey: Prentice-Hall, 1973.
    [4] ZIENKIEWICZ O C, ZHU J Z. The superconvergent patch recovery and a posteriori error estimates, part 1: the recovery technique[J]. International Journal for Numerical Methods in Engineering, 1992, 33 (7): 1331-1364. doi: 10.1002/nme.1620330702
    [5] ZIENKIEWICZ O C, ZHU J Z. The superconvergent patch recovery and a posteriori error estimates, part 2: error estimates and adaptivity[J]. International Journal for Numerical Methods in Engineering, 1992, 33 (7): 1365-1382. doi: 10.1002/nme.1620330703
    [6] KU J, STYNES M. A posteriori error estimates for a dual finite element method for singularly perturbed reaction-diffusion problems[J]. BIT Numerical Mathematics, 2024, 64 (1): 7. doi: 10.1007/s10543-024-01008-x
    [7] BRUNNER M, INNERBERGER M, MIRAÇI A, et al. Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs[J]. IMA Journal of Numerical Analysis, 2024, 44 (3): 1560-1596. doi: 10.1093/imanum/drad039
    [8] WANG C, PING X, WANG X. An adaptive finite element method for crack propagation based on a multifunctional super singular element[J]. International Journal of Mechanical Sciences, 2023, 247 : 108191. doi: 10.1016/j.ijmecsci.2023.108191
    [9] 裘沙沙, 刘星泽, 宁文杰, 等. 断裂相场模型的三维自适应有限元方法[J]. 应用数学和力学, 2024, 45 (4): 391-399. doi: 10.21656/1000-0887.440299

    QIU Shasha, LIU Xingze, NING Wenjie, et al. A three-dimensional adaptive finite element method for phase-field models of fracture[J]. Applied Mathematics and Mechanics, 2024, 45 (4): 391-399. (in Chinese) doi: 10.21656/1000-0887.440299
    [10] 袁驷, 王枚. 一维有限元后处理超收敛解答计算的EEP法[J]. 工程力学, 2004, 21 (2): 1-9.

    YUAN Si, WANG Mei. An element-energy-projection method for post-computation of super-convergent solutions in one-dimensional fem[J]. Engineering Mechanics, 2004, 21 (2): 1-9. (in Chinese)
    [11] 袁驷, 和雪峰. 基于EEP法的一维有限元自适应求解[J]. 应用数学和力学, 2006, 27 (11): 1280-1291. http://www.applmathmech.cn/article/id/814

    YUAN Si, HE Xuefeng. Self-adaptive strategy for one-dimensional finite element method based on EEP method[J]. Applied Mathematics and Mechanics, 2006, 27 (11): 1280-1291. (in Chinese) http://www.applmathmech.cn/article/id/814
    [12] YUAN S, WU Y, XING Q. Recursive super-convergence computation for multi-dimensional problemsvia one-dimensional element energy projection technique[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39 (7): 1031-1044. doi: 10.1007/s10483-018-2345-7
    [13] YUAN S, YUAN Q. Condensed Galerkin element of degree m for first-order initial-value problem with O(h2m+2) super-convergent nodal solutions[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43 (4): 603-614. doi: 10.1007/s10483-022-2831-6
    [14] JIANG K, YUAN S, XING Q. An adaptive nonlinear finite element analysis of minimal surface problem based on element energy projection technique[J]. Engineering Computations, 2020, 37 (8): 2847-2869. doi: 10.1108/EC-08-2019-0369
    [15] 袁驷, 王旭, 邢沁妍, 等. 具有最佳超收敛阶的EEP法计算格式: Ⅰ算法公式[J]. 工程力学, 2007, 24 (10): 1-5.

    YUAN Si, WANG Xu, XING Qinyan, et al. A scheme with optimal order of super-convergence based on eep method: Ⅰ formulation[J]. Engineering Mechanics, 2007, 24 (10): 1-5. (in Chinese)
    [16] 袁驷, 杨帅. 一维Galerkin有限元EEP超收敛计算的加强格式[J/OL]. 工程力学, 2023(2023-12-20)[2024-05-08]. https://kns.cnki.net/kcms/detail/11.2595.o3.20231218.1834.008.html.

    YUAN Si, YANG Shuai. Enhanced form for EEP super-convergence calculation in one-dimensional Galerkin finite element method[J/OL]. Engineering Mechanics, 2023(2023-12-20)[2024-05-08]. https://kns.cnki.net/kcms/detail/11.2595.o3.20231218.1834.008.html. (in Chinese)
    [17] 袁驷, 邢沁妍. 一维Ritz有限元超收敛计算的EEP法简约格式的误差估计[J]. 工程力学, 2014, 31 (12): 1-3.

    YUAN Si, XING Qinyan. An error estimate of EEP super-convergent solutions of simplified form in one-dimensional Ritz FEM[J]. Engineering Mechanics, 2014, 31 (12): 1-3. (in Chinese)
    [18] 黄泽敏, 袁驷. 线法二阶常微分方程组有限元分析的结点精度修正及其超收敛计算[J]. 工程力学, 2022, 39 (S1): 9-14.

    HUANG Zemin, YUAN Si. Nodal accuracy improvement and super-convergent computation in FEM analysis of FEMOL second order ODEs[J]. Engineering Mechanics, 2022, 39 (S1): 9-14. (in Chinese)
    [19] 张林. 固支梁有限元解的超收敛性及最大模估计[J]. 复旦学报(自然科学版), 1996, 35 (4): 421-429.

    ZHANG Lin. Superconvergence and maximum norm estimation of FEM solution for the bending clamped beam[J]. Journal of Fudan University (Natural Science), 1996, 35 (4): 421-429. (in Chinese)
    [20] 赵新中, 陈传淼. 梁问题有限元逼近的新估计及超收敛[J]. 湖南师范大学自然科学学报, 2000, 23 (4): 6-11.

    ZHAO Xinzhong, CHEN Chuanmiao. New estimates of finite element approximation to beam problem and superconvergence[J]. Journal of Natural Science of Hunan Normal University, 2000, 23 (4): 6-11. (in Chinese)
    [21] 孙浩涵, 袁驷. 基于EEP超收敛解的自适应有限元法特性分析[J]. 工程力学, 2019, 36 (2): 17-25.

    SUN Haohan, YUAN Si. Performance of the adaptive finite element method based on the element-energy-projection technique[J]. Engineering Mechanics, 2019, 36 (2): 17-25. (in Chinese)
  • 加载中
图(13) / 表(12)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  15
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-18
  • 修回日期:  2024-05-08
  • 刊出日期:  2025-01-01

目录

    /

    返回文章
    返回