留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时滞反馈对非线性黏弹性隔振系统的竖向振动控制研究

王道航 孙博 刘春霞 周紫怡 刘羽

王道航, 孙博, 刘春霞, 周紫怡, 刘羽. 时滞反馈对非线性黏弹性隔振系统的竖向振动控制研究[J]. 应用数学和力学, 2025, 46(2): 199-207. doi: 10.21656/1000-0887.450037
引用本文: 王道航, 孙博, 刘春霞, 周紫怡, 刘羽. 时滞反馈对非线性黏弹性隔振系统的竖向振动控制研究[J]. 应用数学和力学, 2025, 46(2): 199-207. doi: 10.21656/1000-0887.450037
WANG Daohang, SUN Bo, LIU Chunxia, ZHOU Ziyi, LIU Yu. Vertical Vibration Control of Nonlinear Viscoelastic Isolation Systems With Time Delay Feedback[J]. Applied Mathematics and Mechanics, 2025, 46(2): 199-207. doi: 10.21656/1000-0887.450037
Citation: WANG Daohang, SUN Bo, LIU Chunxia, ZHOU Ziyi, LIU Yu. Vertical Vibration Control of Nonlinear Viscoelastic Isolation Systems With Time Delay Feedback[J]. Applied Mathematics and Mechanics, 2025, 46(2): 199-207. doi: 10.21656/1000-0887.450037

时滞反馈对非线性黏弹性隔振系统的竖向振动控制研究

doi: 10.21656/1000-0887.450037
基金项目: 

云南省基础研究计划(青年项目) 202201AU070227

详细信息
    作者简介:

    王道航(1983—),男,讲师,博士(E-mail: wang_daohang@163.com)

    通讯作者:

    刘春霞(1989—),女,讲师,博士(通讯作者. E-mail: lcx13099971218@163.com)

  • 中图分类号: O322

Vertical Vibration Control of Nonlinear Viscoelastic Isolation Systems With Time Delay Feedback

  • 摘要: 研究了时滞反馈对非线性黏弹性隔振系统的竖向振动控制情况. 基于黏弹性非线性Zener模型,引入时滞控制器,建立了时滞反馈黏弹性隔振系统数学模型;采用多尺度法得到了主共振条件下的近似解析解,并根据Routh-Hurwitz理论获取了系统的稳定性条件;最后,分析了时滞参数与黏弹性隔振系统振动行为的相关性. 研究结果表明,时滞控制器能够有效地对黏弹性竖向振动系统的不稳定行为和振动幅值进行控制,且时滞参数可作为独立变量调控系统振动特性. 研究结果可为利用时滞控制提高黏弹性隔振系统竖向振动稳定性的应用提供理论指导.
  • 图  1  黏弹性隔振系统等效力学模型

    Figure  1.  The equivalent mechanical model for the viscoelastic isolation system

    图  2  数值解与解析解对比

    Figure  2.  Comparison between numerical and analytical solutions

    图  3  系统衰减率随时滞的变化(c=0.07)

    Figure  3.  The decay rates of the system varying with the time delay (c=0.07)

    图  4  不同反馈增益系数下时滞-振幅曲线

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  4.  Delay-amplitude curves under different feedback gain coefficients

    图  5  不同反馈增益系数下的幅频曲线

    Figure  5.  Amplitude frequency curves under different feedback gain coefficients

    图  6  不同时滞量下的幅频曲线

    Figure  6.  Amplitude frequency curves under different time delays

    图  7  τ1τ2有关的稳定区域和不稳定区域

    Figure  7.  Stable and unstable regions related to τ1 and τ2

    图  8  不同时滞参数下外激励-振幅曲线

    Figure  8.  External excitation-amplitude curves under different time delay parameters

  • [1] FAN R, MENG G, YANG J, et al. Experimental study of the effect of viscoelastic damping materials on noise and vibration reduction within railway vehicles[J]. Journal of Sound and Vibration, 2009, 319 (1/2): 58-76.
    [2] SOONG T T, DARGUSH G F. Passive Energy Dissipation Systems in Structural Engineering[M]. New Jersey: John Wiley and Ltd, 1997: 128-143.
    [3] FILHO F J, LUERSEN M A, BAVASTRI C A. Optimal design of viscoelastic vibration absorbers for rotating systems[J]. Journal of Vibration and Control, 2011, 17 (5): 699-710. doi: 10.1177/1077546310374335
    [4] 周颖, 李锐, 吕西林. 粘弹性阻尼器性能试验研究及参数识别[J]. 结构工程师, 2013, 29 (1): 83-91. doi: 10.3969/j.issn.1005-0159.2013.01.013

    ZHOU Ying, LI Rui, LV Xilin. Experimental study and parameter identification of viscoelastic dampers[J]. Structural Engineers, 2013, 29 (1): 83-91. (in Chinese) doi: 10.3969/j.issn.1005-0159.2013.01.013
    [5] MURESAN C I, DULF E H, PRODAN O. A fractional order controller for seismic mitigation of structures equipped with viscoelastic mass dampers[J]. Journal of Vibration and Control, 2016, 22 (8): 1980-1992. doi: 10.1177/1077546314557553
    [6] 范舒铜, 申永军. 多尺度法的推广及在非线性黏弹性系统的应用[J]. 力学学报, 2022, 54 (2): 495-502.

    FAN Shutong, SHEN Yongjun. Extension of multi-scale method and its application to nonlinear viscoelastic system[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54 (2): 495-502. (in Chinese)
    [7] BRENNAN M J, CARRELLA A, WATERS T P, et al. On the dynamic behaviour of a mass supported by a parallel combination of a spring and an elastically connected damper[J]. Journal of Sound and Vibration, 2008, 309 (3/4/5): 823-837.
    [8] WANG X, YAO H X, ZHENG G T. Enhancing the isolation performance by a nonlinear secondary spring in the Zener model[J]. Nonlinear Dynamics, 2017, 87 (4): 2483-2495. doi: 10.1007/s11071-016-3205-3
    [9] SILVA L D H, GONALVES P J P, WAGG D. On the dynamic behavior of the Zener model with nonlinear stiffness for harmonic vibration isolation[J]. Mechanical Systems and Signal Processing, 2018, 112 : 343-358. doi: 10.1016/j.ymssp.2018.04.037
    [10] SHAHRAEENI M, SOROKIN V, MACE B, et al. Effect of damping nonlinearity on the dynamics and performance of a quasi-zero-stiffness vibration isolator[J]. Journal of Sound and Vibration, 2022, 526 : 116822. doi: 10.1016/j.jsv.2022.116822
    [11] LIU Y J, LEE S M. Synchronization criteria of chaotic Lur'e systems with delayed feedback PD control[J]. Neurocomputing, 2016, 189 : 66-71. doi: 10.1016/j.neucom.2015.12.058%yz%$10.3390/rs14194711
    [12] TSIOTRAS P. Further passivity results for the attitude control problem[J]. IEEE Transactions on Automatic Control, 1998, 43 (11): 1597-1600. doi: 10.1109/9.728877
    [13] LIU C X, YAN Y, WANG W Q, et al. Optimal time delayed control of the combination resonances of viscoelastic graphene sheets under dual-frequency excitation[J]. Chaos, Solitons & Fractals, 2022, 165 : 112856.
    [14] 孙秀婷, 钱佳伟, 齐志凤, 等. 非线性隔振及时滞消振方法研究进展[J]. 力学进展, 2023, 53 (2): 308-356.

    SUN Xiuting, QIAN Jiawei, QI Zhifeng, et al. Review on research progress of nonlinear vibration isolation and time-delayed suppression method[J]. Advances in Mechanics, 2023, 53 (2): 308-356. (in Chinese)
    [15] 赵艳影, 徐鉴. 时滞非线性动力吸振器的减振机理[J]. 力学学报, 2008, 40 (1): 98-106. doi: 10.3321/j.issn:0459-1879.2008.01.012

    ZHAO Yanying, XU Jian. Mechanism analysis of delayed nonlinear vibration absorber[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40 (1): 98-106. (in Chinese) doi: 10.3321/j.issn:0459-1879.2008.01.012
    [16] SUN X T, WANG F, XU J. Dynamics and realization of a feedback-controlled nonlinear isolator with variable time delay[J]. Journal of Vibration and Acoustics, 2019, 141 (2): 021005. doi: 10.1115/1.4041369
    [17] 胡宇达, 刘超. 线载和弹性支承作用面内运动薄板磁固耦合双重共振[J]. 应用数学和力学, 2021, 42 (7): 713-722.

    HU Yuda, LIU Chao. Double resonance of magnetism-solid coupling of in-plane moving thin plates with linear loads and elastic supports[J]. Applied Mathematics and Mechanics, 2021, 42 (7): 713-722. (in Chinese)
    [18] 尚慧琳, 张涛, 永蓬. 参数激励驱动微陀螺系统的非线性振动特性研究[J]. 振动与冲击, 2017, 36 (1): 102-107.

    SHANG Huilin, ZHANG Tao, YONG Peng. Nonlinear vibration behaviors of a micro-gyroscope system actuated by a parametric excitation[J]. Journal of Vibration and Shock, 2017, 36 (1): 102-107. (in Chinese)
    [19] LIU C X, YAN Y, WANG W Q. Primary resonance analysis of a nano beam with axial load by nonlocal continuum theory under time delay control[J]. Applied Mathematical Modelling, 2020, 85 (2): 124-140.
    [20] JI J C, ZHANG N. Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber[J]. Journal of Sound and Vibration, 2010, 329 (11): 2044-2056. doi: 10.1016/j.jsv.2009.12.020
    [21] JI J C, LEUNG A Y T. Resonances of a non-linear s. d. o. f. system with two time-delays in linear feedback control[J]. Journal of Sound and Vibration, 2002, 253 (5): 985-1000. doi: 10.1006/jsvi.2001.3974
    [22] LI X Y, JI J C, HANSEN C H, et al. The response of a Duffing-Van der Pol oscillator under delayed feedback control[J]. Journal of Sound and Vibration, 2006, 291 (3/4/5): 644-655.
  • 加载中
图(8)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  34
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-22
  • 修回日期:  2024-05-10
  • 刊出日期:  2025-02-01

目录

    /

    返回文章
    返回